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RESUMEN

Esta tesis proporciona nuevos resultados en el contexto de la estimación y predicción funcional, a partir

de modelos autorregresivos Hilbertianos, o bien, con valores en espacios de Banach separables. El obje-

tivo fundamental es proporcionar herramientas adecuadas para modelizar relaciones lineales entre variables

aleatorias funcionales, que dependen de un índice temporal. Se ha adoptado un enfoque paramétrico, en

la estimación funcional, basado en proyectar sobre bases ortonormales adecuadas. Los resultados deriva-

dos, sobre propiedades asintóticas de los estimadores considerados, se aplican al contexto de la regresión

lineal con respuesta funcional, bajo errores correlados en el tiempo, cuyos valores son funciones en espacios

de Hilbert separables. En particular, se considera un análisis funcional de la varianza para dichos mode-

los. Adicionalmente, se introduce un enfoque Bayesiano en la derivación de la aproximación considerada,

componente a componente, para el operador de autocorrelación, bajo condiciones menos restrictivas. El

enfoque no paramétrico se contempla en la clasificación de datos funcionales con soporte espacial. Las con-

tribuciones de esta tesis se pueden resumir, fundamentalmente, en los siguientes puntos:

• La derivación de nuevos resultados sobre consistencia débil y fuerte de estimadores de proyección del

operador de autocorrelación, en modelos autorregresivos Hilbertianos de orden1 (modelos ARH(1)),

respecto a diferentes normas, tales como la norma definida sobre el espacio de operadores lineales y

acotados, la norma en el espacio de operadores de Hilbert–Schmidt y la norma para operadores traza.

Bajo el mismo escenario, se obtiene la consistencia del correspondiente predictor funcional plug–in.

Se considera, en esta derivación, el caso de autovectores conocidos y desconocidos. Como caso espe-

cial, se aborda el problema de predicción funcional del proceso de Ornstein–Uhlenbeck, con valores

en espacios de Hilbert y Banach separables. Este aspecto motiva el siguiente bloque de contribu-

ciones.

• La extensión de los resultados derivados previamente en el contexto ARH(1) al contexto ARB(1),
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siendo B un espacio de Banach abstracto y separable. Esta extensión también proporciona una

metodología más flexible en el contexto de los procesos autorregresivos funcionales, dado que, hasta

el momento, los espacios considerados por excelencia, en este ámbito, han sido los espacios de fun-

ciones continuas sobre un intervalo acotado, dotados con la norma del supremo, y el espacio de fun-

ciones continuas a la derecha, con límite por la izquierda, dotado con la geometría de Skorokhod. La

metodología desarrollada se basa en la construcción del Lema 2.1 en Kuelbs [1970], donde se es-

tablece que, para cualquier espacio de Banach separable, se puede definir un espacio de Hilbert con

topología más débil, bajo condiciones apropiadas. En este contexto, se genera una nueva sucesión

de espacios de Hilbert y Banach encajados de forma continua, que permite extender los resultados

existentes, sobre consistencia, a un contexto más general.

• La introducción de un enfoque Bayesiano en la estimación componente a componente de los auto-

valores del operador de autocorrelación, estableciendo la eficiencia asintótica y la equivalencia entre

el estimador clásico y Bayesiano. Asimismo, se establece la equivalencia asintótica de los predictores

asociados.

• La aplicación de los resultados derivados al contexto de modelos FANOVA, con término de error

ARH(1), es también considerada. En particular, se introducen nuevos modelos de operadores de

covarianza matricial, cuyas entradas funcionales, fuera de la diagonal, poseen un espectro puntual no

separable.

• Se consideran, en todos los casos, amplios estudios de simulación, con el objeto de comparar con otros

enfoques las propiedades asintóticas de los estimadores analizados, así como derivar numéricamente

nuevas razones de convergencia en relación con la eficiencia asintótica y la consistencia.

• Se ilustra la implementación práctica de los estimadores y predictores funcionales estudiados, para el

análisis de datos de elevada dimensión, en diversos campos de aplicación que incluyen, por ejemplo,

las neurociencias, la ingeniería ferroviaria o el medio ambiente.
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SUMMARY

This PhD thesis focuses on statistical estimation and prediction from temporal correlated functional data.

We adopt the functional time series framework, considering, in particular, autoregressive processes in Hilbert

and Banach spaces (ARH(1) and ARB(1) processes). Our primary objective is the statistical estimation of

the conditional mean, from temporal correlated data, considering linear models in a parametric framework.

That is the case, for example, of the estimation of the functional response in linear regression, with func-

tional regressors and correlated errors, lying in Hilbert or Banach spaces. Some extensions to the Bayesian

framework are derived as well. Nonparametric classification is also considered, in the special case of spa-

tially supported uncorrelated functional data. Specifically, the main contributions of this PhD thesis can be

summarized as follows:

• The derivation of new weak– and strong– consistency results, for componentwise estimators of the

autocorrelation operator of an ARH(1) process, in the norms of bounded linear, Hilbert–Schmidt

and trace operators. Under the same setting of conditions, consistency of the corresponding plug–

in predictors is derived as well. The cases of known and unknown eigenvectors are studied. Some

particular examples are also analysed, such as the Ornstein–Uhlenbeck process in Hilbert and Banach

spaces, as motivation of the subject summarized in the next paragraph.

• The extension of the results previously derived on functional prediction, based on ARC(1) and

ARD(1) processes, with respective values in the space of continuous functions and in the Skorokhod

space, to the case of an abstract separable Banach space. Specifically, sufficient conditions are ob-

tained for the strong–consistency of the componentwise estimator of the autocorrelation operator,

and the associated plug–in predictor. The methodological approach proposed, in the derivation of

these results, is based on the construction appearing in [Kuelbs, 1970, Lemma 2.1], and the defini-

tion of continuous embeddings between suitable Banach and Hilbert spaces.
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• The introduction of the Bayesian statistical perspective, in the componentwise estimation of the au-

tocorrelation operator of an ARH(1) process, with the consideration of the corresponding ARH(1)

plug–in predictor, under weaker setting of conditions than before for its asymptotic efficiency. The

asymptotic equivalence of both, the classical and Bayesian estimators and plug–in predictors, is stud-

ied as well.

• The FANOVA analysis of functional fixed effect models in Hilbert spaces, under correlated errors. In

this context, matrix covariance operators, whose non–diagonal functional entries have non–separable

point spectra, are analysed.

• A wide range of simulation studies have been undertaken, for comparative purposes, in relation to

the existing functional prediction methodologies in the ARH(1), ARB(1) and nonparametric frame-

works.

• Some real–data applications are considered to illustrate the implementation of the proposed func-

tional estimation and prediction methodologies in several applied fields (e.g., neuroimaging, railway

engineering, environment, etc).
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Mathematics is the art of giving the
same name to different things

Henri Poincaré (29th April 1854 - 17th July 1912)

1
INTRODUCTION

This introduction provides the reader with a summarized review on FDA focused on func-

tional regression, and, in particular, on functional time series analysis.
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NOTATION

FDA Functional Data Analysis.

N,Z,Q,R,C Sets of natural, integers, rational, real and complex numbers, respectively.

A×B Cartesian product of setsA andB.

(Ω,A,P) Probability space, being Ω a non–empty set, A a σ–algebra and P a probability measure.

i.i.d.r.v. Independent and identically distributed random variables.

B(a, b) A Beta distribution with shape parameters a and b.

E {X} ,Var {X} Expectation and variance, respectively, of a random variableX .

E {X|Y } Conditional expectation of the random variableX , depending on the random variable Y .

CX , CX,Y Autocovariance operator of X and cross–covariance operator between X and Y , respec-

tively.

X⊥Y X and Y are weakly orthogonal between them.

Idn Identity matrix (real–valued matrix or matrix of identity operators) of dimension n× n.

N (µ, σ2) Real–valued normal distribution with expectation µ and variance σ2.

N (µ,C) Infinite–dimensional Gaussian distribution with functional meanµ and covariance operator

C .

ln(x) Natural logarithm.

⌈x⌉ Integer part of x.

{xi, i = 1, . . . , n} Sequence indexed from i = 1 to i = n.
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A = {ai,j}j=1,...,m
i=1,...,n Matrix which entries are given by ai,j , for each i = 1, . . . , n, j = 1, . . . ,m.

1· Indicator function: 1A (x) = 1 if x ∈ A; 1A (x) = 0 if x does not belong toA.

X ≡ Y X is equivalent to Y .

X ≃ Y X is approximated by Y .

� End of proof.

un ∼ o (vn) Little–o notation: lim
n→∞

un
vn

= 0.

un ∼ O (vn) Big–O notation: there exists a finite constantM such that lim
n→∞

un
vn

=M .

−→p Converge in probability.

−→a.s. Almost sure convergence.

span (xi, i ∈ I) Linear space generated by {xi, i ∈ I}.

δk,p Delta function such that δk,p = 0 when k ̸= p, and δk,p = 1 when k = p.

Tr (A) Trace of matrixA.

sgn(x) Sign of the value x, such that sgn(x) = 1x≥0 − 1x<0.

C ((a, b)) Space of continuous functions, whose support is defined on the real interval (a, b).

(H, ⟨·, ·⟩H) Hilbert spaceH with its associated inner product ⟨·, ·⟩H .

(B, ∥·∥B) Banach spaceB with its associated norm ∥·∥B .

B∗ Topological dual of a Banach spaceB.

ℓ∗ Adjoint of the operator ℓ.(
L(B), ∥·∥L(B)

)
Space of bounded linear operators from the Banach spaceB to itself, with the usual

uniform norm ∥·∥L(B).
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(
S(H), ∥·∥S(H)

)
Space of Hilbert–Schmidt operators overH , with the Hilbert–Schmidt norm∥·∥S(H).(

N (H), ∥·∥N (H)

)
Space of nuclear operators overH , with the nuclear norm ∥·∥N (H).

f ⊗ g Tensorial product of Hilbert–valued functions f and g, given by (f ⊗ g) (x) = ⟨f, x⟩Hg for

each x ∈ H , which is a Hilbert–Schmidt operator onH .
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INTRODUCTION

The term Functional Data was coined by Ramsay [1982]. As exposed in the monograph by Ramsay

and Silverman [2005], the recent technological developments have led to the formulation of alternative

methodologies for dealing with high–dimensional data problems (see, e.g., Bouveyron [2004]; Bühlmann

and de Geer [2011]). Since a finite discretization will be required, in some cases, Multivariate Data Anal-

ysis (MVA) techniques (see Anderson [2003]; Izenman [2008], among others) have been adapted to the

Functional Data Analysis (FDA) context, where measures are being gathered with an increasing frequency,

but ill–posed problems arise. This fact has raised the formulation of a formally mathematical framework.

We refer to the comprehensive monographs and surveys by Bosq [2000]; Cuevas [2014]; Ferraty and Vieu

[2006]; Goia and Vieu [2016]; Horváth and Kokoszka [2012]; Hsing and Eubank [2015], where some of

the FDA foundations have been introduced and discussed, covering, in particular, probability in Banach

spaces (see Ledoux and Talagrand [2011]), functional time series (see, e.g., Bosq [2000]; Ferraty et al.

[2002]), functional classification techniques (see Álvarez-Liébana and Ruiz-Medina [2015]; Baíllo et al.

[2011]; Ferraty and Vieu [2006]; James and Hastie [2001]), outliers detection (see Kuhnt and Rehage

[2016], among others), or, recent extensions of Mahalanobis distance in multivariate analysis, based on

RKHS theory, to solve the above-referred classification and outliers detection problems in FDA context

(see Berrendero et al. [2018a]).

As commented, when high–dimensional data are analyzed from a functional perspective, i.e., infinite–

dimensional random elements are considered in their statistical analysis, more complex challenges arise from

this richest source of information. This one of the main motivations, in the extensive literature developed in

the last few decades on FDA. Note that, from FDA, a wide range of problems can be addressed. That is the

case, for example, of problems related to temporal gene expression data (see Leng and Müller [2006]), spec-

trometric absorbance curves (see Ferraty and Vieu [2006]), climatological data (see Besse et al. [2000]) or

analysis of air pollutants, which are measured every hour but the pattern of daily concentration curves pro-

vides key information (see, e.g., Febrero-Bande et al. [2008]; Ignaccolo et al. [2014]). Even though it is not
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the scope of this dissertation, it deserves to be mentioned the fact that several methodologies can be found

for the exploratory analysis of functional data, based, for instance, on Functional Principal Components

Analysis (so–called FPCA; see, e.g., Aguilera et al. [1999]; Boente and Fraiman [2000]; Febrero-Bande et

al. [2017]). Hall and Hosseini-Nasab [2006] quantify the errors that arise through statistical approxima-

tion, in successive terms of orders n1/2, n1, and n3/2, where n denotes the sample size. They show

how spacings among eigenvalues impact on statistical performance. The term of size n1/2 illustrates first–

order properties, and directly leads to the limit theory which describes the dominant effect of spacings (e.g.,

spacings are seen to have an immediate, first–order effect on properties of eigenfunction estimators, but

only a second–order effect on eigenvalue estimators). FPCA has been the standard approach to estimat-

ing the slope function in functional linear regression. Hall and Horowitz [2007] refer to this approach in

detail, proving that, under certain circumstances, optimal convergence rates are achieved by the PCA tech-

nique. Quadratic–regularisation–based approaches were also suggested, discussing their advantages from

some points of view. In that framework, we will refer to one of the initiating works, e.g., to Pezzulli and

Silverman [1993], on smoothed principal component analysis (replacing the usualL2-orthonormality con-

straint on the principal components, by orthonormality with respect to an inner product, taking account

of the roughness of the functions). In this paper, the theoretical, and, in particular, the asymptotic prop-

erties of the presented smoothed principal component based methodology are derived. Penalized FPCA

techniques, based onB–spline basis andP–spline penalties, were derived in Aguilera and Aguilera-Morillo

[2013], well–adapted to data constituted by smooth functions disrupted by an error (see also Escabias et

al. [2014], regarding FPCA applications, in the context of functional generalized logit models). As an alter-

native to the infinite–dimensional decomposition in terms of the FPC scores, the Functional Partial Least

Squares Regression (so–called FPLSR) methodology was also extended from the multivariate parametric

model framework to the FDA context. In particular, the partial least squares estimator of slope, in functional

linear regression, is either used to construct linear predictive models, or as a projection tool for further statis-

tical analysis. Delaigle and Hall [2012] develop an explicit formulation of partial least squares for functional

data, leading to an accurate and deep understanding of this technique. Their results motivate new theory,

demonstrating consistency and establishing convergence rates (see also Albaqshi [2017], on generalized
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partial least squares approach, for nominal multinomial logit regression models with a functional covariate).

Functional regression arises when responses or covariates include functional data. Functional regression

models can be classified into four types depending on whether the responses or covariates are functional

or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates,

(iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional

and scalar covariates. In addition, functional regression models can be linear, partially linear, or nonlinear.

In particular, functional polynomial models, functional single and multiple index models, and functional

additive models are three special cases of functional nonlinear models. The present dissertation is focused on

dynamic functional linear regression of type (iii), in the special case where functional covariates are defined

from the past functional values of the response.

Functional Linear Regression models (FLR models) of type (i) have been considered, for example, in

Cardot et al. [1999]. They apply the FPCA methodology in order to achieve a strongly–consistent compo-

nentwise estimator of the functional slope (see later Cardot and Sarda [2011]). We also refer to the papers

by Cai and Hall [2006]; Cardot et al. [2003]; Cardot and Sarda [2005]; Hall and Horowitz [2007] and

Müller and Stadtmüller [2005], on the rates of convergence in estimating the slope function. The last pa-

per investigates the rate of convergence of estimating the regression weight function in a functional linear

regression model. It is assumed that the predictor as well as the weight function are smooth and periodic in

the sense that the derivatives are equal at the boundary points. Under suitable smoothness and periodicity

assumptions on the predictor and the weight function, Li and Hsing [2007] consider the case of functional

data observed at discrete points with measurement error. The complex Fourier basis is adopted in estimat-

ing the true data, and the regression weight function, based on the penalized least-squares criterion, and the

rate of convergence is obtained for both estimators as well. A smoothing splines estimator for the functional

slope parameter, based on a slight modification of the usual penalty, was regarded in Crambes et al. [2009].

The rates of convergence of the prediction error depend on the smoothness of the slope function and on the

structure of the predictors. The smoothing spline estimator is modified by using a denoising correction of

the covariance matrix of discretized curves, for the case of models with errors-in-variables (see also Cardot et

al. [2007]). Reiss and Ogden [2007] combined the above-referred dimension-reduction approaches: Func-

tional versions of Principal Component Regression (PCR) and Partial Least Squares (PLS). In particular,
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using B-splines and roughness penalties, two versions of functional PCR are developed.

Ramsay and Dalzell [1991] consideredL-spline to derive generalizations of linear modelling and prin-

cipal component analysis for FDA, in the context of models of type (iii). A review on functional regression

models, covering, in particular, the case of functional response in FLRM can be found, for example, in Chiou

et al. [2003]. Cuevas et al. [2002] studied Hilbert–valued explanatory and response variables, assuming a

fixed and triangular design. Recently, Ruiz-Medina et al. [2018] have formulated a dynamical linear multi-

ple regression model in function spaces, under correlated errors. This formulation involves kernel regressors.

A generalized least-squared regression parameter estimator is derived. Its asymptotic normality and strong

consistency is obtained, under suitable conditions. Li et al. [2010] introduced a new class of functional gen-

eralized linear models of type (iv), where the response is a scalar and some of the covariates are functional.

The interaction between the multiple covariates and the functional predictor is modeled semiparametrically

with a single-index structure.

In the Bayesian framework, Lian et al. [2016] derived the asymptotic properties of Bayesian functional

linear regression models of type (i). They illustrated how the choice of the prior distributions can imply

the minimax rate in prediction risk (see the Bayesian approach developed in Shang [2013] for estimating

the bandwidth in nonparametric kernel–based functional regression, with functional predictor and scalar

response). Also, in the context of functional regression models of type (i), Grollemund et al. [2018] obtain

the Bayesian estimation of the support of the coefficient function. Specifically, a Bayes estimator of the sup-

port is built with a specific loss function, and two Bayes estimators of the coefficient function, respectively

involving a smooth and a a step function are also formulated. Bosq and Ruiz-Medina [2014] introduce a

Bayesian framework for the functional prediction of l2-valued Poison processes, as well as for the mean and

covariance operator estimation, from independent and identically distributed Gaussian infinite-dimensional

random variables.

As a complement for the classical linear representations such as eigenfunctions and functional principal

components, Chen and Müller [2012] introduce the notions of manifold mean, manifold modes of func-

tional variation and of functional manifold components, for functional data lying on an unknown nonlinear

low-dimensional space, in the context of manifold learning. Nonlinear dimension reduction methods are
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adapted here to the functional data settings. Under certain assumptions consistency proofs for the formu-

lated estimators are also derived. To validate the superior behavior of manifold mean and functional man-

ifold components over traditional cross-sectional mean and functional principal components, simulations

and applications are carried out as well.

Semi–parametric and nonparametric approaches provide flexible contexts, where the functional regres-

sors can take values in semi–metric spaces (see the recent survey by Goia and Vieu [2016]). Masry [2005]

derived the asymptotic normality of a functional extension of the classical Nadaraya–Watson kernel–based

regression estimator, when the response is scalar, and the explanatory random variable takes values, in some

abstract space. Several authors have contributed to the nonparametric FDA context, in particular, to the

area of kernel regression estimation (see Ferraty and Vieu [2006, 2011], among others). Aneiros-Pérez et

al. [2011] also adopt a nonparametric approach in functional time series prediction. Ferraty et al. [2011]

consider kernel regression with functional response, and derive uniform rates of convergence of the non-

parametric conditional mean estimator, when the functional response and the regressor are respectively val-

ued, in a Banach and a semi–metric space. The pointwise asymptotic normality of a kernel type estimator

of the regression operator is established in Ferraty et al. [2012], for the case of response taking values in a

separable Hilbert space, and the regressor living in a measurable space. The double functional feature of the

problem makes the formulas of the asymptotic bias and variance harder to estimate than in more usual re-

gression settings. This difficulty is overcome by using resampling ideas. Ferraty et al. [2002] addressed the

nonparametric functional time series prediction, in the general framework of regression estimation, from de-

pendent samples, whose regressors take values in some infinite dimensional semi-normed vectorial space. A

fractal dimension based approach is considered to solve so–called curse of dimensionality. The asymptotics

for a kernel type nonparametric predictor linkes the rates of convergence with the fractal dimension of the

functional process. Aneiros and Vieu [2017] studied a fully nonparametric regression model, involving an

infinite-dimensional covariate, in which sparsity is modelled in an additive way, leading to some improve-

ments on the rate of convergence, and the number of predictor variables in the model.

As mentioned above, an important drawback of the nonparametric functional approach is the so-called

curse of dimensionality (see Geenens [2011]; Vieu [2018], among others). The semi–parametric framework
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offers a partial solution to this problem. For example, in the context of semi–functional (semi–parametric)

approaches, Aneiros-Pérez and Vieu [2006] proposed a semi–functional partial linear model, in which a

response variable is inferred from an additional functional random variable, and a linear combination of a

set of real–valued explanatory variables. The forecasting of the response variable was therein addressed by

a nonparametric kernel–based predictor of the residuals, obtained from the least-squares estimation of the

real-valued linear part. The referred semi–functional methodology was adapted by Aneiros-Pérez and Vieu

[2008] to the particular context of functional time series. Goia and Vieu [2015] recently proposed a two–

terms approach applied to functional regression, formulating the so–called Partitioned Functional Single

Index Model, extending the Single Index Model established in Ferraty et al. [2003] (see also the previous

work by Chen et al. [2011]).

Additionally to conditional functional mean estimation, several authors have contributed to conditional

mode, conditional density, hazard function or conditional distribution estimation, in the FDA context.

Chaouch et al. [2017] proposed a nonparametric kernel–based estimator for the conditional mode, pro-

viding uniformly consistent rates of convergence. The asymptotic normality of a conditional mode esti-

mator was proved in Ezzahrioui and Ould-Saïd [2008, 2010], in both i.i.d. and mixing scenarios. Ling et

al. [2017] formulated a well–adapted conditional mode estimator, under stationary ergodic and missing at

random (MAR) responses (see also Ferraty et al. [2013b] on mean estimation with data missing at ran-

dom for functional covariables). Guillou and Merlevède [2001] derive a kernel density estimator, in the

context of strictly stationary continuous time process, focusing on its asymptotic variance. Nonparamet-

ric estimation of some functionals of the conditional distribution, including the regression function, the

conditional cumulative distribution, and the conditional density of a scalar response variable Y given a ran-

dom variable X, taking values in a semimetric space, is addressed in Ferraty et al. [2010]. They obtain the

uniform almost complete convergence (with rate) of the kernel estimators of such nonparametric mod-

els. With the same aim, Kara et al. [2017a] formulated a k–Nearest–Neighbours (kNN) methodology for

i.i.d. pairs {(Xi, Yi) , i = 1, . . . , n}, where {Xi, i = 1, . . . , n} are valued in a semi–metric space and

{Yi, i = 1, . . . , n} are in R, on the estimation of three conditional models: regression, i.e., E {Y |X = x}

(see also previous works by Burba et al. [2009]; Laloë [2008]), conditional probability distribution func-

tion (i.e.,F x (·) = P (Y ≤ ·|X = x)), and conditional probability density (i.e., fx (·) = (F x)′ (·)). The
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three conditional models above referred are also tackled in Kara et al. [2017b], providing uniform asymp-

totic results on the choice of the bandwidth involved.

Median notions and depth–based measures have also been studied. A random depth which approxi-

mates the Tukey depth is extended to FDA framework in Cuesta-Albertos and Nieto-Reyes [2008]. Cuevas

and Fraiman [2009] formulate a general depth measure, based on one-dimensional linear continuous projec-

tions, with applications, in particular, to inference in functional data analysis, image analysis, classification,

and, specially, in the statistical analysis of data, which are elements of a Banach space. A depth based clas-

sification procedure for functional data is introduced in López-Pintado and Romo [2006]. López-Pintado

and Romo [2009] apply a new definition of depth for functional observations based on the graphic repre-

sentation of the curves, as starting point for robust statistics.

In the context of functional linear regression models with predictor variables observed over a grid and

a scalar response, a basis expansions of the functional covariates is considered, and a likelihood ratio test

is applied in Collazos et al. [2016] to testing the predictive significance of a particular covariate, and the

identification of the set of relevant covariates, adapted to the sample size. A functional F-like test for selec-

tion among two nested functional linear models is developed in Shen and Faraway [2004], for linear models

where the response is a function, but the predictors are vectors. They derived the null distribution, and its

convenient approximation, as well as a test procedure for individual predictors. Zoglat [2008] establishes an

extension of MANOVA statistical techniques to the FDA context. Specifically, ordinary least-squares and

FANOVA analysis are carried out, under correlation functional errors. In the Gaussian case, maximum like-

lihood functional parameter estimation is also obtained. Linear hypothesis testing is addressed as well. Ruiz-

Medina [2016] formulates an alternative to the above-referred FANOVA analysis, based on the generalized

least-squares functional parameter estimation of the fixed effect vector (respectively regression parameter

vector), extending theL2([0, 1])-valued framework in Zoglat [2008] to the abstract separable Hilbert space

context. Particularly, the RKHS norm of the error term is involved in the definition of the mean-quadratic

loss function. In the Gaussian case, linear hypothesis testing is also established. The null distribution of

the functional test statistic is obtained through its characteristic functional, given by an infinite-dimensional

χ-square like probability distribution. In the same framework, Álvarez-Liébana and Ruiz-Medina [2017]

(see also Appendix A4 below), the case of an ARH(1) error process is analyzed, when a non–separable
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point spectra define the non-diagonal functional entries of the matrix covariance operator of the error term.

Functional linear testing is addressed from Theorem 4.1 in Cuesta-Albertos et al. [2007]. A simulation study

and real-data application in the context of functional magnetic resonance imaging is implemented as well.

The classical theory of statistical inference from time series models (see, e.g., Brillinger [1981]; Brock-

well and Davis [1987]; Hamilton [1994]; Rao et al. [2012]) has emerged as a powerful tool for the analysis

of data correlated in time, motivated by a wide range of applications, in diverse fields such as electricity con-

sumption (see Abdel-Aal and Al-Garni [1997]), environmental data (see Mills [2013]) and term structure

forecasting (see Diebold and Li [2006]), among others. In the same spirit, one of the basic pillars of the cur-

rent literature, on functional time series, is the large variety of applied problems involving high-dimensional

temporal correlated data, which can be considered, at least, functional in nature. In particular, model (1.1)

below has been applied during the last few decades to a wide range of real–data problems such as, functional

weather prediction (see, for example Besse et al. [2000]), forecasting of sulfur–dioxide levels (see de Cas-

tro et al. [2005]), analysis of epidemiological data (see Ruiz-Medina et al. [2014]), credit card transactions

(see Horváth et al. [2010]), among other areas of application. The current dissertation is mainly aimed at

providing alternative estimation methodologies, and new asymptotic results on linear functional time series

models, involving, in some cases, extensions to more general frameworks.

There exists an extensive literature on linear processes in Hilbert (see the survey in Álvarez-Liébana

[2017] and Appendix A7 below) and Banach spaces, since the pioneering works by Bosq [1999a,b], in re-

lation to Autoregressive Hilbertian processes, and by Merlevède [1995], on invertibility of functional lin-

ear processes in Hilbert spaces. Limit results for linear processes in Hilbert and Banach spaces, supporting

inference on these processes, were derived, for example, in Bosq [1996]; Dedecker and Merlevède [2003];

Menneteau [2005]; Merlevède [1996a,b]; Merlevède et al. [1997], among others. Particularly, in the mono-

grapgh by Bosq [2000], sufficient conditions for the existence of an unique stationary solution to the fol-

lowing state equation are established (see [Bosq, 2000, Lemma 3.1]):

Xn(t) = ρ (Xn−1) (t) + εn(t), Xn, εn ∈ H, ρ : H −→ H, t ∈ [0, δ] , n ∈ Z. (1.1)
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The autocorrelation operator ρ appeared in (1.1) was imposed to belong to the space of bounded linear

operators on H (i.e., ρ ∈ L(H)), being ε = {εn, n ∈ Z} an H–valued strong white noise with σ2
ε =

E
{
∥εn∥2H

}
<∞ (and uncorrelated with the random initial condition).

The monograph by Bosq [2000] provides moment–based componentwise estimation and plug-in pre-

diction of ARH(p), and, in particular ARH(1) processes, based on projection into the eigenvectors of the

autocovariance operator, when they are known, or, into their empirical version, when they are unknown.

The asymptotic properties of these estimators are derived as well. In particular, weak- and strong- consis-

tency, and large deviation results are obtained, for a suitable truncation order, depending on the sample size.

Usually these conditions are related to the separation of the eigenvalues of the autocovariance operator, and

the rate of convergence to zero of the eigenvalues of the autocovariance operatorC.

As commented, the present dissertation is mainly concerned with functional ARH(1)/ARB(1) plug-

in prediction. From a methodological point of view, Bosq [2000] considers the following componentwise

estimator of an autocorrelation operator ρ, in terms of the empirical eigenvalues {Cn,j, j ≥ 1} and eigen-

vectors {ϕn,j, j ≥ 1} of the autocovariance operatorC:

ρ̂kn (·) =
kn∑
j=1

1

Cn,j
⟨·, ϕn,j⟩HΠ̃knDn (ϕn,j) .

HereDn denotes the empirical cross–covariance operator, with Π̃kn being the orthogonal projector into the

finite–dimensional spanned by the empirical eigenvectors {ϕn,j, 1 ≤ j ≤ kn}.

Since the results derived in Bosq [2000], several authors have contributed in relation to the asymptotic

properties of componentwise estimators of ρ, under known or unknown eigenvectors of C . Rates of con-

vergence to zero, in the mean-square sense, of the norm, in the space of bounded linear operator on H,

of the error, associated with a regularized componentwise estimator of ρ, are obtained in Guillas [2001].

These convergence results are reformulated in the Hilbert–Schmidt operator norm in Álvarez-Liébana et al.

[2017] (see also Appendix A3), providing information on the asymptotic sample behaviour of the spectrum

tail of the empirical autocorrelation operator. Parallel results are obtained for the associated plug–in predic-

tor, in the corresponding Hilbert norm. Asymptotic normality is derived in Mas [1999], paying attention

to the adjoint of ρ instead of itself. Mas [2000] proposed to approximate C by a linear operator smoothed
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by a family of functions
{
bn,p(x) =

xp

(x+bn)
p+1 , p ≥ 0, n ∈ Z

}
, being {bn, n ∈ Z} a strictly positive se-

quence decreasing to zero. The formulated estimators (so–called resolvent class estimators) ofρ∗ were given

by ρ̂∗n,p = bn,p (Cn)D
∗
n, whereD∗

n denotes the adjoint of the empirical cross–covariance operator. Further

results on the asymptotic properties, in the norm of bounded linear operators, of a componentwise esti-

mator of ρ∗ can be found in Mas [2004]. Mas [2007] completes results on weak convergence in the func-

tional autoregressive model. Large and moderate deviations results for the empirical mean and covariance

of autoregressive processes in Hilbert spaces are derived in Mas and Menneteau [2003a]. Parallel results

are obtained, in this paper, for the eigenvalues and associated projections of the empirical autocovariance

operator.

One of the first works which considered alternative bases, to the ones involved in the spectral decom-

position of the covariance operator, was the one developed by Bensmain and Mourid [2001], where a basis

expansion, in terms of sines and cosines is considered, for a special class of homogeneous autocorrelation op-

erators. Regularization procedures based on smoothing functions have been addressed, in terms of splines

in Besse and Cardot [1996], who proposed to simultaneously estimate the sample paths of the ARH(1)

process, and to project the data using natural cubic splines (usually called smoothing splines in the nonpara-

metric curve estimation literature). Alternatively, in the framework of wavelet bases, Antoniadis and Sapati-

nas [2003] proposed regularized wavelet-vaguelette estimators. A new approach, based on predictive factor

decomposition, for the estimation of the autoregression operator is adopted in Kargin and Onatski [2008].

The technique is based on finding a reduced-rank approximation to the autocorrelation operator that mini-

mizes the expected squared norm of the prediction error. The methodology is based on a regularized version

of the empirical singular value decomposition, proving its consistency and evaluating its convergence rates.

We now summarize some of the extensions of the ARH(1) framework contemplated in the current lit-

erature. The additive inclusion of exogenous variables (in the so-called ARHX processes) is addressed in

Damon and Guillas [2002, 2005]. See also Marion and Pumo [2004]; Mas and Pumo [2007], where the

ARHD process family is studied, involving the first derivatives as the exogenous variables. Exogenous in-

formation can also be incorporated in a non–additive way, where, at each instant, different regimes for the

autocorrelation operator are randomly chosen (see Guillas [2002]). The randomness feature of ρ was also
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addressed in Mourid [2004]. Hilbertian moving average processes have been investigated in Chen et al.

[2016]; Turbillon et al. [2008]. Conditional autoregressive Hilbertian processes are analyzed in Cugliari

[2013]. Local asymptotic normality of autoregressive Hilbertian processes is studied in Kara-Terki and

Mourid [2016]). The interest of this approach can be illustrated in terms of the Ornstein–Uhlenbeck pro-

cess, in Hilbert and Banach spaces (see Álvarez-Liébana et al. [2016], and also Appendix A2). Generalized

linear processes in Hilbert spaces (GLPH processes) have also attracted the attention of many authors, al-

lowing the unboundedness of the state equation operators (see Bosq [2007]). Soltani and Hashemi [2011]

addressed the estimation of an ARH(1) process, in which the autocorrelation operator is periodically cor-

related (PCARH(1) process), and {ρn, n ∈ Z} ⊂ L(H). Spatial Autoregressive Hilbertian processes of

order one (SARH(1) processes) are introduced in Ruiz-Medina [2011]. Sufficient conditions for the ex-

istence of an unique stationary solution to the SARH(1) state equation are derived. This approach was

applied in Ruiz-Medina [2012] to the context of spatial functional prediction of ocean surface temperature,

providing the moment–based estimation of the functional parameters involved. Some contributions, in par-

ticular, kriging and co-kriging techniques, for the statistical analysis of spatial functional data can be found

in Delicado et al. [2010]; Giraldo et al. [2010]; Nerini et al. [2010], among others.

Many of the works on the inference based on linear functional time series are formulated in Hilbert

spaces. This choice is not arbitrary since a Hilbert space naturally provides a generalization of classical Eu-

clidean spaces, with an inner–product–based structure. However, Hilbert spaces, likeL2 spaces, that usually

arise in practice, are endowed with a norm that is not able to measure the local regularity or singularity level

of functions. The Banach space framework is more flexible in that sense. One of the first attempts can be

found in Pumo [1998], where prediction of autoregressive processes with values in the space of continuous

functions on [0, 1],with the supremum norm, is addressed (see also Benyelles and Mourid [2001]; Mourid

[1996]). Bosq [2000] proves strong-consistency results for componentwise estimators of the autocorre-

lation operator of ARC(1) processes. Mas and Pumo [2010] introduce functional time series models in

Banach spaces. In particular, strong mixing conditions and the absolute regularity of Banach-valued autore-

gressive processes have been studied in Allam and Mourid [2001]. Empirical estimators for Banach-valued

autoregressive processes are studied in Bosq [2002], where, under some regularity conditions, and for the

case of orthogonal innovations, the empirical mean is proved to be asymptotically optimal, with respect to
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almost surely (a.s.) convergence, and convergence of order two. The empirical autocovariance operator was

also interpreted as a sample mean of an autoregressive process in a suitable space of linear operators. The

extension of these results to the case of weakly dependent innovations is obtained in Dehling and Sharipov

[2005]. A strongly-consistent sieve estimator of the autocorrelation operator of a Banach-valued autoregres-

sive process is considered in Rachedi and Mourid [2003]. Limit theorems for a seasonality estimator, in the

case of Banach autoregressive perturbations, are formulated in Mourid [2002]. Confidence regions for the

seasonality function, in the Banach space of continuous functions, is obtained as well. An approximation

of Parzen’s optimal predictor, in the RKHS framework, is applied in Mokhtari and Mourid [2003], for pre-

diction of temporal stochastic process in Banach spaces. Bueno-Larraz and Klepsch [2018] have recently

adapted the variable selection proposal, established in Berrendero et al. [2018a], based on the RKHS the-

ory, to address ARC–based prediction. The existence and uniqueness of an almost surely strictly periodically

correlated solution, to the first order autoregressive model in Banach spaces, is derived in Parvardeh et al.

[2017]. Conditions for the existence of strictly stationary solutions of ARMA equations in Banach spaces,

with independent and identically distributed noise innovations, were previously obtained in Spangenberg

[2013].

Under some regularity conditions, limit results are obtained for ARD(1) processes in Hajj [2011], where

D([0, 1])denotes the Skorokhod space of right-continuous functions on [0, 1],having limit at the left at each

t ∈ [0, 1], equipped with the Skorokhod topology (i.e., J1–topology). See also the dissertation by Hajj

[2013], where consistent estimators, in the D([0, 1])–norm, of the autocorrelation operator of an ARD(1)

process are derived. The estimation of moving average D([0, 1])–valued processes of order one is also ad-

dressed. In this setting, detection of the jumps, and the estimation of their amplitudes play a crucial role.

With this purpose, Blanke and Bosq [2014] provided exponential bounds for those discontinuities, which

were later estimated and detected in Blanke and Bosq [2016]. In the referred work, the setback ofD ([0, 1])–

valued ARMA(1,1) processes were examined, considering different scenarios: fixed instants with a given

but unknown probability of jumps (deterministic case), random instants with ordered intensities (random

case), and random instants with non ordered intensities (fully random case). In a more general framework,

we refer to the work by Davis and Mikosch [2008], where the extreme value behaviour of space–time pro-

cesses, represented as linear processes in D
(
[0, 1]d

)
is investigated.
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We now refer to the functional setting considered in Labbas and Mourid [2002], for an ARB(1) process,

with B being an arbitrary real separable Banach space. Specifically, they apply the construction in Lemma

2.1 by Kuelbs [1970], where a Hilbert space H̃, with weaker topology than B, is considered. B is then

continuously embedded into H̃.The componentwise estimation of the continuous extended version to H̃

of the autocorrelation operator ρ ∈ L(B) is established. Its strong-consistency in the norm of the space

L(H̃) is proved as well. Convergence in L(B) is derived in Ruiz-Medina and Álvarez-Liébana [2018b]

(see Appendix A8), under suitable conditions, involving a Rigged–Hilbert–Space structure embedded in

the abstract construction established in Lemma 2.1 in Kuelbs [1970].

A Bayesian approach is adopted in Blanke and Bosq [2015] for predicting real continuous-time pro-

cesses. For the two equivalent definitions of a Bayesian predictor formulated, they study admissibility, pre-

diction sufficiency, and non–unbiasedness. Comparison with efficient predictors is performed as well. Ap-

plications to prediction of Poisson and Ornstein-Uhlenbeck processes are contemplated. Petris [2013] in-

troduces a general framework for statistical analysis of functional time series from a Bayesian perspective,

based on an extension of the popular dynamic linear model to Banach-space valued observations and states.

Bayesian nonparametric forecasting of monotonic functional time series is achieved in Canale and Ruggiero

[2016] (see also the dissertation presented by Kowal [2017]). Ruiz-Medina and Álvarez-Liébana [2017a]

(see also Appendix A5.2) derive the asymptotic efficiency of a Bayesian componentwise estimator of the

autocorrelation operator of an ARH(1) process. Its equivalence with the classical diagonal componentwise

estimator formulated in Appendix A3 is also obtained. Remark that bootstrap methods well–adapted for

functional time series have been recently developed by Shang [2018], on the estimation of the long–run

covariance under nonparametric kernel–based techniques. (See also the survey by Goia and Vieu [2014],

and the references therein).

Some general approaches beyond the above–referred state–space–equation based modelling, in func-

tional time series, have been recently formulated. A first attempt can be found in Hörmann and Kokoszka

[2010], where the notion of m–dependent processes is introduced. Under non–restrictive assumptions,

which admit nonlinear functional time series models, Kokoszka and Reimherr [2013a] establish asymptotic

normality of the sample principal components of functional stochastic processes. The asymptotic results de-
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rived hold under the asymptotic normality of the sample covariance operator. This condition is satisfied, for

example, by weakly dependent functional time series which admit expansions as Bernoulli shifts. Here, the

weak dependence is quantified by the condition of L4–m–approximability. The convergence of the cross

covariance operators of the sample functional principal components to their counterparts, in the normal

limit, are demostrated as well. A functional version of ARCH processes, involving weakly dependent pro-

cesses, can be found in Hörmann et al. [2013]. In the context of ergodic and stationary functional data

based inference, a nonparametric kernel–based regression was suggested by Laïb and Louani [2010], and

its asymptotic properties were therein studied.

Testing procedures have also played a mayor role in the context of correlated functional data. Kokoszka

et al. [2008] test the nullity of the regression operator, from the FPC decomposition. The limiting distribu-

tion of test statistic is Chi-squared. This distribution also provides a good approximation for finite samples

(see also Gabrys et al. [2010]; Gabrys and Kokoszka [2007]). An application to test the interaction of

the auroral substorms with the equatorial and mid-latitude currents is considered in Maslova et al. [2010].

Horváth et al. [2013] test the null hypothesis that a collection of functional observations are independent

and identically distributed. The formulated procedure is based on the sum of theL2–norms of the empirical

correlation functions. The limit distribution of the proposed test statistic is established under the null hy-

pothesis. When the sample size and the number of lags, involved in the test statistic, tend to ∞ consistency

is proved, under the alternative, where the sample exhibits serial correlation. In the context of change point

analysis, in functional linear regression, Horváth and Reeder [2012] introduce a statistical test to detect

changes in the autocorrelation operator (respectively, regression operator) during the obserbation period

(see also Horváth and Kokoszka [2012], and previous work by Berkes et al. [2009] on detecting changes in

the mean of functional observations). Horváth et al. [2014] extend, to the functional time series framework,

the well-known tests in the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) family. This paper formalizes the

assumption of stationarity in the context of functional time series and proposes several procedures to test the

null hypothesis of stationarity. The properties of the tests under several alternatives, including change-point,

are studied. Approaches for testing the structural stability of temporally dependent functional observations

are considered in Zhang et al. [2011]. Kokoszka and Reimherr [2013b] propose a multistage testing pro-

cedure to determine the order p of a functional autoregressive process FAR (p). The proposed test statistic,
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based on estimating the kernel function in this linear model, is proved to be approximately distributed as a

Chi–squared distribution, with the number of degrees of freedom determined by the number of functional

principal components used to represent the data (see also the selection procedure proposed in Aue et al.

[2015] for the determination of the lag structure, and the dimensionality in a functional autoregressive pro-

cess, based on a functional final prediction error model).

In the stationary functional time series framework, spectral analysis also plays a major role. Soltani and

Shishebor [2007] introduce periodically correlated processes with values in Hilbert spaces. They discusse

the harmonizability of such processes. Particularly, time-dependent spectra on Hilbert spaces are intro-

duced, as well as the concept of a time-dependent spectral density for a periodically correlated process.

Shishebor et al. [2011] studied the spectral asymptotic properties, and distribution of the periodogram op-

erator of periodically correlated processes. Soltani et al. [2010] also investigated its statistical properties, for

weakly and strongly second–order periodically correlated processes, with values in a separable Hilbert space.

In particular, they proved that the periodogram is asymptotically unbiased for the corresponding spectral

density. Regarding the statistical inference on the second-order structure of a stationary sequence of cor-

related functional data, in the frequency domain framework, Panaretos and Tavakoli [2013b] consider the

spectral density operator, which generalises the notion of a spectral density matrix to the functional setting,

and characterises the second-order dynamics of the process. The functional Discrete Fourier Transform

(f DFT) of the empirical covariance operator, leading to the periodogram operator, is also here the main

tool. They consider an asymptotic Gaussian representation of the f DFT, allowing the transformation of the

original collection of dependent random functions into a collection of approximately independent complex-

valued Gaussian random functions. Smoothed versions of the periodogram kernel are constructed, provid-

ing estimators of the spectral density operator. The consistency and asymptotic law of these estimators are

also obtained. In particular, Central Limit Theorems for the mean and the long-run covariance operator of a

stationary functional time series are derived. These results do not depend on structural modelling assump-

tions. Functional versions of classical cumulant mixing conditions are shown to be stable under discrete

observation of the individual curves (see also Panaretos and Tavakoli [2013a]). Based on the referred work

by Panaretos and Tavakoli [2013b], the discrete Fourier transform adapted to FDA was considered in Hör-

mann et al. [2016], on testing the presence of several forms of the periodic component in functional time
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series. They consider two scenarios, corresponding to the case where the periodic functional signal is con-

taminated by functional white noise, and a more general setting of a contaminating process which is weakly

dependent. Multivariate and fully functional tests are considered, motivated by the likelihood principle.

The fully functional tests exhibit a superior balance of size and power, in the context of functional time se-

ries. Asymptotic null distributions of all tests are derived, and their consistency is established. Finite sample

properties and their application to real-data problems are also analyzed (see also Kidziński et al. [2016],

where the spectral domain PCA techniques were extended and applied to periodically correlated functional

time series). Based on the spectral density operator, a dynamic funtional principal component analysis has

been recently proposed in [Hörmann and Kidziński, 2015, Section 3.3], in the context of functional time

series analysis.

Beyond the stationary assumption, the wavelet transform plays a key role. For instance, Antoniadis et al.

[2006] derives functional wavelet-kernel prediction, for nonstationary functional time series. A notion of

similarity, based on wavelet decompositions, is used in order to calibrate the prediction. Asymptotic prop-

erties of these predictors are investigated, under mild conditions. A nonparametric resampling procedure is

used to generate valid asymptotic pointwise confidence intervals for the predicted trajectories, in a flexible

way. Applications of this wavelet-based methodology, in terms of simulations and real-data problems, can

be found in Cugliari [2011] and Antoniadis et al. [2012].

Summarizing, the current dissertation provides alternative and new results, in the context of weakly–

and strongly–consistent estimation and prediction of ARH(1) and ARB(1) processes. Some applications

to the FANOVA context are showed. A survey paper is also provided in Appendix A7. Specifically, the

achievements herein discussed can be grouped into four main branches. On the one hand, Appendices A2–

A3 and A5–A7 are concerned to asymptotic properties of estimators and plug-in predictors of stationary

ARH(1) processes. The derivation of a strongly–consistent estimator of an ARB(1) process, with values in

an abstract separable Banach space, has also been carried out in Appendix A8. We have also implemented

flexible numerical frameworks, on the supervised classification of spatially supported random functions (see

Appendix A1), and on testing the functional significance in FANOVA models (see Appendix A4). Specifi-

cally, six main chapters summarize the contents of the eight Appendices Appendices A1–A8, which are the
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papers written, in relation to the results derived in this thesis. The main objectives appear in Chapter 2. The

methodology applied is explained in Chapter 3. The results and the conclusions are given in Chapters 4–5,

respectively. In accordance with the regulation in force, conclusions can also be found in Spanish language

(see Chapter 6). Open research lines have briefly been discussed in Chapter 7. The cited bibliography is

listed at the end of this document.
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I do not see that the sex of the candi-
date is an argument against her ad-
mission as a teaching assistant. Af-
ter all, we are a university and not a
bathing establishment
Amalie E. Noether (23rd March 1882 – 14th April 1935)

2
OBJECTIVES

We summarize here the main objectives addressed in the research articles. Results and con-

clusions reached in Appendices A1–A8 below will be discussed in Chapter 4 and Chapters 5

–6, respectively.
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• Appendix A1. Ferraty and Vieu [2006] proposed a supervised nonparametric curve classification

technique. The application of this technique in the classification of n–dimensional supported func-

tional data requires the development of suitable numerical integration methods. This task has con-

stituted the main objective of Appendix A1 (see Álvarez-Liébana and Ruiz-Medina [2015]). Specif-

ically, the implementation of semi–metrics to measure the closeness between n–dimensional sup-

ported random elements is required. A kernel–based approach is applied in the estimation of the

posterior probabilities of the membership classes. The second objective of this appendix has been

the illustration of the performance of the functional classification methodology proposed, in terms

of the simulation study undertaken. A real–data application, in the field of railway engineering, is also

addressed, aimed to implement, in practice, the proposed classification procedure, with the goal of

functional classification of rail roughness surfaces.

• AppendixA2. The work in Álvarez-Liébana et al. [2016], reflected in Appendix A2 below, has as pri-

mary aim the theoretically formulation of consistent functional predictors of the Ornstein–Uhlenbeck

process in Hilbert and Banach spaces (referred as O.U. process , in the following; see Uhlenbeck and

Ornstein [1930]; Wang and Uhlenbeck [1945]). In particular, the ARH(1) or ARC(1) frameworks

are adopted. A simulation study is undertaken to illustrate the properties of the derived funtional

estimators of the autocorrelation operator, as well as of the corresponding plug-in predictors of the

O.U. process, based on the Maximum Likelihood Estimator (MLE) of the scale parameter θ, charac-

terizing its covariance kernel.

• Appendix A3. Appendix A3 has as primary goal the derivation, in the standard ARH(1) context, of

sufficient conditions for the convergence to zero, in the mean–square sense, of the Hilbert–Schmidt

norm of the error functional process, associated with a diagonal componentwise estimator of the au-

tocorrelation operator (denoted as ρ̂kn in Appendix A3; see also Álvarez-Liébana et al. [2017]), for

a suitable truncation parameter kn. As second goal, the mean convergence of the associated plug–in

predictor, in the norm ofH , is considered (see next appendices, and Propositions A3.3.1–A3.3.2 and

Remark A3.3.3 in Appendix A3, for more details). To provide an explicit context where assumptions

made can be verified is also primordial. Note that this approach is specially useful, in practice, when
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the autocovariance and autocorrelation operators admit a spectral diagonalization, in terms of uncon-

ditional bases, like, for example, wavelet bases in Besov spaces (see, for example, Nason [2008]).

• Appendix A4. Appendix A4) (see Álvarez-Liébana and Ruiz-Medina [2017]) is mainly aimed at

establishing an explicit class of error matrix covariance operators with non–separable point spectra,

characterizing its non–diagonal functional entries, in the multivariate FANOVA model introduced in

Ruiz-Medina [2016], extending the work by Zoglat [2008]. Developments in Appendix A4 are also

encouraged to attach a second objective, namely, to solve a second gap, to implement an alternative

to the functional statistical test proposed in Ruiz-Medina [2016]. Under the null hypothesis, the

infinite–dimensional probability distribution of the functional statistics, formulated in Ruiz-Medina

[2016], is given by its characteristic functional. Thus, its explicit expression can not be obtained.

Here, the random–direction based testing procedure derived from a multivariate version of Theorem

4.1 in Cuesta-Albertos et al. [2007] will be applied. As a final purpose, the effect of the spatial domain

in the FANOVA analysis performed, and the flexibility of our approach will be tested, in a simulation

study, and real–data example on fMRI analysis, respectively.

• Appendix A5. The main purpose of Appendix A5, whose results are published in Ruiz-Medina and

Álvarez-Liébana [2017], has consisted in deriving a Bayesian componentwise estimator of the auto-

correlation operator, asymptotically equivalent, in the sense of its asymptotic efficiency, to the classi-

cal diagonal componetwise estimator studied inAppendixA3, under the Gaussian scenario, relaxing

conditions on the convergence to zero of the point spectrum of ρ.

• AppendixA6. The main objective of the article (under minor revision) by Ruiz-Medina and Álvarez-

Liébana [2018a] (see also Appendix A6) has been to prove that the componentwise estimator of ρ

established in Bosq [2000] is also strongly–consistent in the norms of Hilbert–Schmidt and trace

operators, when ρ belongs to such classes. The second goal consists of the derivation of sufficient

conditions for the strong-consistency of a diagonal componentwise estimator of a compact autocor-

relation operator ρ, involving its empirical left and right eigenvectors, in the singular value decompo-

sition of a truncated version of its moment-based estimator. Note that, here, weaker conditions on ρ

are required, and an important dimension reduction is achieved in terms of this diagonal design.
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• Appendix A7. The primary objective of Álvarez-Liébana [2017] (submitted; see also Appendix A7)

is to provide an overview on functional time series in Hilbert spaces, focused on the linear modeling.

A comparative study between the most remarkable methodologies constitutes the second aim in this

appendix. Illustration of the asymptotic properties of a componentwise estimator of ρ, under the

diagonal spectral design, when the eigenvectors of the autocovariance operator C are unknown, is

contemplated as third objetive.

• AppendixA8. The main goal of the proposal formulated in Ruiz-Medina and Álvarez-Liébana [2018b]

(recently accepted for publication; see also Appendix A8), has consisted in the introduction of a suit-

able theoretical framework for autoregressive functional estimation and prediction, in abstract Ba-

nach spaces. Nuclear spaces arise as an important special case, where the scale of fractional Besov

and, in particular, Sobolev spaces, can be considered, for the description of the (regular/singular) lo-

cal behaviour of the functional data analysed. In particular, the results derived hold beyond the usual

regularity assumptions, characterizing the functions lying in the spaces C ([0, 1]) , and Skorokhod

spacesD ([0, 1]) (see Bosq [2000]; Hajj [2011]). This objective also provides an extension of the ap-

proach formulated in Labbas and Mourid [2002], where strongly–consistency is derived in the norm

of L(H̃), being H̃ a separable Hilbert space where the Banach space B is continuously embedded,

according to the construction given in the Kuelb’s Lemma (see [Kuelbs, 1970, Lemma 2.1]). This

construction, and the continuous embeddings additionally established have played a crucial role in

our approach (see Chapter 3, Appendix A8, to see details).
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Algebra is nothing more than geom-
etry, in words; geometry is nothing
more than algebra, in pictures

Sophie Germain (1st April 1776 - 27th June 1831)

3
METHODOLOGY

The methodology adopted in Appendices A1–A8 is now described.
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• Appendix A1. The methodology in this appendix is inspired in the work developed by Ferraty and

Vieu [2006] (see the R software freely available at https://www.math.univ-toulouse.fr/

~ferraty/SOFTWARES/NPFDA/index.html). Specifically, we consider a supervised nonpara-

metric kernel–based classification methodology, extending the curve classification procedure therein

proposed. The membership probabilities in our classification approach are assigned as follows (see

equations (A1.3)–(A1.5) in Appendix A1):

y (χ) = argmax
g∈G

pg (χ) , pg (χ) = P (Y = g|χ = χ) = E {1Y=g|χ = χ} .

p̂g (χ) ≡ p̂g,h (χ) =

m∑
i=1

K

(
d (χ, χi)

h (χ)

)
1yi=g

m∑
i=1

K

(
d (χ, χi)

h (χ)

) =

∑
{i: yi=g}

K

(
d (χ, χi)

h (χ)

)
m∑
i=1

K

(
d (χ, χi)

h (χ)

) ,

from a sample of functional random variables {χi, i = 1, . . . ,m} and their class memberships

{yi, i = 1, . . . ,m} ⊂ G = {1, . . . , g}, being K (·) a kernel function. The most crucial selec-

tion problem to be addressed, jointly with the bandwidth h(χ), depending on χ, has been to decide

which distancesd (·, ·)must be implemented. In the case of curves classification, semi–metrics based

on Functional Principal Component Analysis (FPCA) and Functional Partial Least Squares Regres-

sion (FPLSR), as well as a semi–metric based on derivatives, have usually been considered. They are

implemented, in terms of a suitable numerical approximations (see also details in Febrero-Bande et

al. [2017]).

FPCA and FPLSR semi–metrics have been extended to the context of random functions with n–

dimensional support (such as surfaces). For this purpose, since FPCA and FPLSR semi–metrics are

approximated in terms of a numerical integrals, an extension of the so–called Smolyak (univariate)

quadrature rule of order k, to the integration of n–dimensional random functions, has been imple-

mented (see equation (A1.9) and Definition A1.3.2 in Appendix A1.3.2 below):

In (f) ≃
n⊗
j=1

U
(j)
lj

(f) = Qn
k , lj ≤ k, f ∈ Cr

(
n∏
j=1

Ij

)
, I ⊂ R,
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where
{
U

(j)
lj
, j = 1, . . . , n

}
denotes a sequence of univariate klj –point quadrature rules with

klj = 2lj−1 − 1, for each j = 1, . . . , n. These univariate quadrature rules, at dimension j, are

given by

I (fj) ≃ U
(j)
lj

(fj) :=

klj∑
h=1

w
(j)
h fj

(
x
(j)
h

)
, fj ∈ Cr (Ij) , (3.1)

verifying Ip = U
(j)
lj

(p), with p being a polynomial of degree at most klj . In equation (3.1), the

sets
{
w

(j)
h , h = 1, . . . , klj

}
and

{
x
(j)
h , h = 1, . . . , klj

}
denote, respectively, the weights and the

nodes provided by the univariate rule U (j)
lj

, at dimension j, for each j = 1, . . . , n. Particularly, we

will focus on the Trapezoidal and the Clenshaw–Curtis univariate quadrature rules (see Gerstner

[2007]). Thereby, we are able to implement semi–metrics for measuring the closeness between ran-

dom objects with n–dimensional support.

• Appendix A2. The methodology herein adopted, on the functional estimation and prediction of an

O.U. process, has been formulated in the framework of ARH(1) and ARC(1) processes (see, e.g., Bosq

[2000]). The O.U. ξ satisfies the stochastic equation

dξt = θ (µ− ξt) dt+ σdWt, θ, σ > 0, t ∈ R. (3.2)

driven by standard bilateral Wiener processW = {Wt, t ∈ R}; i.e.,Wt = W
(1)
t 1R+(t)+W

(2)
−t 1R−(t),

with W (1)
t andW (2)

−t , being independent standard Wiener processes, and 1R+ and 1R− respectively

denoting the indicator functions over the positive and negative real line.

From (3.2), the O.U. process admits the following integral representation (see equations (A2.2)–

(A2.3) in Appendix A2.1), assuming σ = 1 in equation (3.2) above:

Xn(t) = ξnh+t =

∫ nh+t

−∞
e−θ(nh+t−s)dWs = ρθ (Xn−1) (t) + εn(t),

ρθ (x) (t) = e−θtx(h), εn(t) =

∫ nh+t

nh

e−θ(nh+t−s)dWs, θ > 0, 0 ≤ t ≤ h, n ∈ Z,

whose probability density function satisfies the well–known Fokker–Planck equation (see Kadanoff
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[2000]). Since our autocorrelation operator depends on the unknown scale parameter θ, a plug–in

estimator of ρ is formulated, based on the maximum likelihood estimator θ̂T of θ (see [Kleptsyna and

Breton, 2002, Propositions 2.2–2.3], regarding its asymptotic properties, [Kutoyants, 2004, p. 63 and

p. 117], and equation (A2.7) in Appendix A2.2), i.e.,

θ̂T =
1 +

ξ20
T
− ξ2T

T

2
T

∫ T

0

ξ2t dt

, T > 0.

In the context of ARH(1) processes, the choice made on the involved real separable Hilbert space is

given by:

H = L2
(
[0, h], β[0,h], λ+ δ(h)

)
, ⟨f, g⟩H =

√∫ h

0

f(t)g(t)dt+ f(h)g(h), (3.3)

where λ and δ(h) denote the Lesbesgue and Dirac measures (at point h), respectively, while β[0,h]

represents the Borelσ–algebra generated by the subintervals included in [0, h]. Note that the Hilbert

space in (3.3) determines a set of equivalence classes such that f ∼λ+δ(h) g as long as

(
λ+ δ(h)

)
({t : f(t) ̸= g(t)}) = 0.

A similar methodology is adopted in our ARB(1) functional prediction of the O.U. process. In par-

ticular,

B = C ([0, h]) , ∥f∥B = sup
0≤x≤h

|f(x)| , (3.4)

has been selected as Banach space.

The strategy adopted in the simulation study is based on the so–called Euler–Maruyama’s approach

(see, among others, Kloeden and Platen [1992]), discretizing the stochastic linear differential equa-

tion as follows:

ξ̂i+1 = ξ̂i − θξ̂i +∆Wi, ξ̂0 = 0, i = 0, 1, . . . , p, ∆Wi ∼
√
∆tN (0, 1) ,
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being ∆t = 0.02 the discretization step, and 0 = t0 < t1 < . . . < tp = T the discretized interval,

in which ξ̂ is valued.

• Appendix A3. From the following ARH(1) model (see details Álvarez-Liébana et al. [2017] in Ap-

pendix A3):

Xn(t) = ρ (Xn−1) (t) + εn(t), ∥ρ∥L(H) < 1, σ2
ε = E

{
∥εn∥2H

}
<∞, n ∈ Z,

our methodological estimation approach is formulated, under suitable conditions. Here, as before,

∥·∥L(H) denotes the norm in the space of bounded linear operators onH . The trace self–adjoint au-

tocovariance operator is assumed to be full rank operator (see Assumption A1 in Appendix A3.2).

The proof of the mean-square convergence to zero of the Hilbert-Schmidt norm of the error, asso-

ciated with the diagonal componentwise estimator of ρ formulated, is based on the assumption that

the eigenvectors {ϕj, j ≥ 1} of the autocovariance operatorC also diagonalize the operator ρ (see

Assumption A2 in Appendix A3.2), i.e.,

ρ =
∞∑
j=1

ρjϕj⊗ϕj,
∞∑
j=1

ρ2j <∞, ∥ρ∥L(H) = sup
j≥1

|ρj| < 1, Cε =
∞∑
j=1

Cj
(
1− ρ2j

)
ϕj⊗ϕj,

withCε being the autocovariance operator of the innovation process.

Under the assumption that {ϕj, j ≥ 1} are known, our methodology revolves on the component-

wise estimation ofρ, in terms of the moment–based estimation of its eigenvalues{ρj, j = 1, . . . , kn},

from the projections of the ARH(1) processX into {ϕj, j = 1, . . . , kn}, for a suitable kn such that

lim
n→∞

Ckn
√
n = ∞, kn < n, lim

n→∞
kn = ∞. (3.5)

Specifically, these eigenvalues can be understood as the autocorrelation parameters of projected sta-

tionary AR(1) processes Xn,j = ⟨Xn, ϕj⟩H , n ∈ Z, for each j = 1, . . . , kn. Thus (see Álvarez-
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Liébana et al. [2017] and equations (A3.15)–(A3.16) in Appendix A3.3),

ρ̂kn =
kn∑
j=1

ρ̂n,jϕj ⊗ ϕj, ρ̂n,j =
n

n− 1

n−2∑
i=0

⟨Xi, ϕj⟩H⟨Xi+1, ϕj⟩H

n−1∑
i=0

⟨Xi, ϕj⟩2H

, (3.6)

for akn satisfying the above referred conditions in (3.5), ensuring the desirable asymptotic properties

of our estimator (see, in particular, Assumptions A1–A4 imposed in Appendix A3.2).

Concerning the methodology carried out in the simulation study (see Appendix A3.5.2), we have

compared the accuracy of the referred approach with those given in Bosq [2000]; Guillas [2001], test-

ing sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and different discretization steps

and truncation rules. For smaller sample sizes, the approaches in Antoniadis and Sapatinas [2003];

Besse et al. [2000] are also tested.

• Appendix A4. A nonseparable point spectrum scenario, for the nondiagonal functional entries of

the matrix covariance operator of the ARH(1) error term, in the multivariate FANOVA modeling in-

troduced in Ruiz-Medina [2016], is considered. Specifically, we study a multivariate Hilbert–valued

fixed effect model with ARH(1) errors (see equations (A4.2)–(A4.3) in Appendix A4 below):

Y (·) = Xβ (·) + ε (·) , X ∈ Rn×p, β (·) ∈ Hp, Y (·) = [Y1 (·) , . . . , Yn (·)]T ∈ Hn,

ε (·) = [ε1 (·) , . . . , εn (·)]T ∈ Hn, εm (·) = ρ (εm−1) (·) + νm (·) , m ∈ Z,

(3.7)

Assumptions A0–A1 (see Appendix A4.2 below), and the semiorthogonality of the non–square de-

sign matrix X, such that XTX = Idp, with X ∈ Rn×p lead to the suitable definition of the general-

ized least–squared estimator β̂ of the regression parameter vectorβ (see equations (A4.2)–(A4.9) in

Appendix A4 below), minimizing the mean quadratic error in the RKHS norm of the error tem. The

almost surely finiteness of both, the explained and the residual variability, is obtained under the defi-

nition of a suitable linear functional transformation, in terms of the matrix operatorW (see equations
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(A4.13)–(A4.15) in Appendix A4.2):

WY = WXβ +Wε, W =



∞∑
k=1

wk11ϕk ⊗ ϕk . . .
∞∑
k=1

wk1nϕk ⊗ ϕk

... . . . ...
∞∑
k=1

wkn1ϕk ⊗ ϕk . . .
∞∑
k=1

wknnϕk ⊗ ϕk


.

The methodology adopted in testing the significance of the fixed effect parameters is based on a mul-

tivariate version of Theorem 4.1 in Cuesta-Albertos et al. [2007] (see Ruiz-Medina [2016] in rela-

tion to the formulation of a functional general linear test, in terms of a test statistics displaying an

infinite–dimensional chi–square like distribution, under the null hypothesis). Specifically, for a given

value of a random functional vector h = (h1, . . . , hp), defined, for example, in terms of a realiza-

tion of a multivariate (p–dimensional) Gaussian stochastic process with trajectories in Hp, testing

H0 : β1 (·) = . . . = βp (·) is equivalent to testing

Hh
0 : ⟨β1 (·) , h1 (·)⟩H = . . . = ⟨βp (·) , hp (·)⟩H .

Thus, a statistical test at level α to testHh
0 is equivalent to a statistical test at the same level α to test

H0.

For illustration and motivation of the flexibility of our proposal, the fMRI response to external stimuli

(brain is scanned at 16 depth levels, constituted each of them by a grid of 64 × 64 tridimensional

pixels) is analysed, and the significance of functional fixed effect parameters has been tested, adapting

the software implemented by Worsley et al. [2002].

• Appendix A5. The methodology established in Appendix A5 will attempt to compensate the slow

decay rate of the eigenvalues {ρj, j ≥ 1} of the autocorrelation operator ρ with the faster decay

velocity of the eigenvalues
{
σ2
j , j ≥ 1

}
of the trace autocovariance operator Cε of the innovation

process (see Assumption A1 in Appendix A5.2). As usual, the trace autocovariance operator C is
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assumed to be full rank operator (see Assumption A2 in Appendix A5.2). Again, C and ρ can be

diagonally decomposed, in a weak–sense, in terms of a common orthonormal system of eigenvec-

tors {ϕj, j ≥ 1}, being {Cj, j ≥ 1} the eigenvalues of C and {ρj, j ≥ 1} the eigenvalues of ρ.

Under Assumptions A1–A2 imposed in Ruiz-Medina and Álvarez-Liébana [2017a], the following

relationship between the eigenvalues of ρ,C andCε hold:

{
σ2
j =

(
1− ρ2j

)
Cj, j ≥ 1

}
. (3.8)

Under the conditions assumed in Ruiz-Medina and Álvarez-Liébana [2017a] (see also Appendix

A5.2), the asymptotic efficiency of the following componentwise estimator of ρ is proved:

ρ̂n =
kn∑
j=1

ρ̂n,jϕj ⊗ ϕj, ρ̂n,j =

i−1∑
i=0

⟨Xi, ϕj⟩H⟨Xi+1, ϕj⟩H

i−1∑
i=0

⟨Xi, ϕj⟩2H

=

i−1∑
i=0

Xi,jXi+1,j

i−1∑
i=0

X2
i,j

.

A generalized maximum likelihood componentwise estimator of ρ, given by

ρ̃n =
kn∑
j=1

ρ̃n,jϕj ⊗ ϕj , with

ρ̃n,j =

[
n∑
i=1

Xi−1,jXi,j +X2
i−1,j

]

2
n∑
i=1

X2
i−1,j

±

√√√√[ n∑
i=1

Xi−1,jXi,j −X2
i−1,j

]2
− 4σ2

j

[
n∑
i=1

X2
i−1,j

]
[2− (aj + bj)]

2
n∑
i=1

X2
i−1,j

,
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is also formulated, assuming the following Beta prior distribution on the eigenvalues of ρ

ρj ∼ B (aj, bj) ,

with shape parameters (aj, bj) satisfying aj + bj ≥ 2, to ensure the asymptotic efficiency, and then,

E {ρj} =
aj

aj+bj
, for each j ≥ 1. Note that the Bayesian methodology proposed is based on the

assumption that the projections {θj, j ≥ 1} , into {ϕj, j ≥ 1} , of the unknown functional param-

eter θ satisfy θj⊥{Xn,k, n ≥ 1, k ̸= j}. Under such an assumption, the asymptotic equivalence

of both, frequentist and Bayesian proposals, also holds in our infinite-dimensional framework (see

Theorems A5.4.1–A5.4.2 in Appendix A5.4).

• Appendix A6. Here, under conditions assumed in [Bosq, 2000, Chapter 8], for the case of unknown

eigenvectors, the strong consistency, in the Hilbert-Schmidt and trace norms (whenρbelongs to such

classes) of

ρ̃kn(x) =
(
Π̃knDnC

−1
n Π̃kn

)
(x) =

(
kn∑
j=1

1

Cn,j
⟨x, ϕn,j⟩H̃Π̃

knDn(ϕn,j)

)
, x ∈ H, (3.9)

is proved, with slight modification of the methodological approach applied in the proofs given in

Bosq [2000] when the norm of the space of bounded linear operators is considered (see Theorem

A6.3.1 and Remark A6.3.1 in Appendix A6.3 below). Here, Π̃kn is the orthogonal projector into

the empirical eigenvectors {ϕn,j, j ≥ 1} of C , associated with eigenvalues {Cn,j, j ≥ 1} of the

empirical autocovariance operator Cn, with n denoting the functional sample size. In particular, kn

in (3.9) should be such that

knΛkn = o

(√
n

ln(n)

)
, Λkn = sup

1≤j≤kn
(Cj − Cj+1)

−1, (3.10)

as n goes to infinity.

When ρ is compact but not Hilbert–Schmidt, neither symmetric operator, a new diagonal compo-

nentwise estimator is also formulated, but this time, in terms of a system of eigenvectors, different
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from that one of C . Specifically, the empirical version of the left and right eigenvector of ρ are con-

sidered, and its empirical singular values are also computed until a suitable truncation order kn, to

ensure strong–consistency (see Ruiz-Medina and Álvarez-Liébana [2018a] and Appendix A6.4 be-

low). In particular, kn is assumed to be such that, as n→ ∞,

knΛ
ρ
kn

= o

(
1

∥DnC−1
n −DC−1∥L(H)

)
, Λρkn = sup

1≤j≤kn

{(
|ρj|2 − |ρj+1|2

)−1
}
. (3.11)

• Appendix A7. A review has been developed in Appendix A7 (see Álvarez-Liébana [2017]), mainly

focused on the main references existing in the literature about the componentwise estimation and

prediction of linear processes in Hilbert and Banach spaces (see Appendix A7.2). The usual projec-

tion into the eigenvectors of the autocovariance operator, as well as in terms of alternative bases is

also reviewed (see Appendix A7.4).

Based on the works by Damon and Guillas [2002, 2005]; Guillas [2002]; Marion and Pumo [2004],

among others, extensions of the classical ARH(1) model are covered in Appendix A7.3. Beyond the

stiffness of parametric approaches, alternative nonparametric and semi–parametric methodologies

have been also sketched.

In addition to the detailed overview and comparative study implemented, Appendix A7.7 is intended

to restrict our attention to the particular case in Bosq [2000] of a diagonal componentwise strongly–

consistent estimator of the autocorrelation operator of an ARH(1) process.

• AppendixA8. Lemma 2.1 in Kuelbs [1970] involves a separable Hilbert space H̃,with weaker topol-

ogy than our separable Banach space B of interest. Thus, B is continuously embedded into H̃. An

extended version of an ARB(1) process X can then be defined as follows (see Appendices A8.2–

A8.3):

Xn =
H̃

∞∑
j=1

⟨Xn, vj⟩H̃vj a.s., ⟨x, y⟩H̃ =
∞∑
n=1

tnFn(x)Fn(y), x, y ∈ H̃,

for any orthonormal basis {vj, j ≥ 1} of H̃ , being {xn, n ∈ N} ⊂ B a dense sequence, under the
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construction of a sequence {Fn, n ∈ N}, belonging to the dual space B∗, such that

Fn(xn) = ∥xn∥B and ∥x∥B = sup
n≥1

|Fn(x)|, for every x ∈ B. Here, {tn, n ∈ N} is an abso-

lute summable sequence of positive numbers, whose sum is equal to one.

The elements appearing in the above definition of H̃ are considered in the construction of a

Rigged–Hilbert–Space structure
(
H̃∗, H, H̃

)
(also known as a Gelfand triple). Specifically, H is

defined as the following subspace ofB :

{
x ∈ B :

∞∑
n=1

[Fn(x)]
2 <∞

}
.

Thus, the inner product inH is given by

⟨x, y⟩H =
∞∑
n=1

Fn(x)Fn(y), x, y ∈ H,

and H is closed with respect to the norm associated to the above inner product. Therefore,

B∗ ↪→ H ↪→ B and the following continuous embeddings are established (see Ruiz-Medina and

Álvarez-Liébana [2018b] and Lemma A8.3.1 in Appendix A8.3 below):

H(X) ↪→ H̃∗ ↪→ B∗ ↪→ H ↪→ B ↪→ H̃ ↪→ [H(X)]∗, (3.12)

whereH(X)denotes the RKHS generated by the autocovariance operatorC of the extended ARB(1)

process. Specifically,

H̃∗ =

{
x ∈ B;

∞∑
n=1

1

tn
{Fn(x)}2 <∞

}
, ⟨f, g⟩H̃∗ =

∞∑
n=1

1

tn
Fn(f)Fn(g),

H(X) =
{
x ∈ H̃;

⟨
C−1(x), x

⟩
H̃
<∞

}
, [H(X)]∗ =

{
x ∈ H̃; ⟨C(x), x⟩H̃ <∞

}
,

where, as denoted in Ruiz-Medina and Álvarez-Liébana [2018b], [H(X)]∗ constitutes the dual space

of the RKHS H(X) and, as before,B denotes a separable Banach space andB∗ its dual.

Additionally, to the above Hilbert–based construction, envelopingB andB∗, similar assumptions to
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those ones required in the Hilbert space context are established, for the extended ARB(1) process,

jointly with some additional conditions on the regularity, with respect to the norm inB, of the eigen-

vectors of C in H̃. The strong consistency of the empirical eigenvectors of C, in the Banach norm,

is then obtained (see Ruiz-Medina and Álvarez-Liébana [2018b], and auxiliary results in Lemmas

A8.2.1–A8.3.8 and Remarks A8.3.4–A8.3.6). As final result, it is obtained the strong consistency, in

the space of bounded linear operators onB, of the following componentwise estimator of ρ :

ρ̃kn(x) =
(
Π̃knDnC

−1
n Π̃kn

)
(x) =

(
kn∑
j=1

1

Cn,j
⟨x, ϕn,j⟩H̃Π̃

knDn(ϕn,j)

)
, x ∈ B, (3.13)

where, as before, Π̃kn denotes the orthogonal projector into the empirical eigenvectors

{ϕn,j, j = 1, . . . , kn} ofC , associated with empirical eigenvalues {Cn,j, j = 1, . . . , kn}, andDn

denotes the empirical cross–covariance operator of the extended version ofX in H̃ . Here, truncation

parameter kn must satisfy

knΛkn = o

(√
n

ln(n)

)
, Λkn = sup

1≤j≤kn
(Cj − Cj+1)

−1, (3.14)

as n goes to infinity, ensuring large deviation results in L(B). In addition,

knC
−1
kn

kn∑
j=1

aj = o

(√
n

ln(n)

)
, n→ ∞, (3.15)

is also assumed for the strong consistency.

In the simulation study undertaken, motivated by the wavelet–based characterization of Besov spaces,

the following functional spaces are considered to illustrate the performance of the approach adopted

(see Supplementary Material provided in Ruiz-Medina and Álvarez-Liébana [2018b] and Appendix

A8.8):

B = B0
∞,∞ ([0, 1]) , B∗ = B0

1,1 ([0, 1])
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in the scale of Besov spaces

{(
Bs
p,q, ∥·∥p,q,s

)
, 1 ≤ p, q ≤ ∞, s ∈ R

}
.

The space H̃ is here given by H̃ = H−β
2 ([0, 1]) andH = L2 ([0, 1]).
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I have had my results for a long
time: but I do not yet know how I
am to arrive at them

J. C. F. Gauss (30th April 1777 – 23rd February 1855)

4
RESULTS

The main results achieved throughout the current dissertation will be summarized and

discussed in this chapter, detailing both theoretical and numerical results addressed in

Appendices A1–A8. General conclusions and consequences of those results are discussed

in Chapter 5 (see Chapter 6 in Spanish language). Current research lines can be found in

Chapter 7.
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• Appendix A1. We have proposed an extension of the Smolyak quadrature rule to random functions

with n–dimensional support, considering, in particular, the case of random surfaces, providing the

nodes and weights required for its numerical integration. This numerical result is applied to the clas-

sification of uncorrelated spectrometric curves, such that a similar miss–classification average rate

(MCAR) is displayed in comparison with Ferraty and Vieu [2006]. In the simulation study under-

taken, in the context of supervised classification of random surfaces, two families, with very close

mean functions, have been generated. Specifically, a MCAR of 0.3 is gained, when the FPCA semi–

metric is performed in terms of the Clenshaw–Curtis quadrature rule, while a MCAR of 0.12 is no-

ticed for the Trapezoidal rule. In addition, FPLSR semi–metric clearly outperforms these results. In

the field of railway engineering, we classify 12 classes of deterministic irregularities, disrupted by a

zero–mean Gaussian device error, and 4 classes of purely random Gaussian railway roughness. In the

former scenario, a MCAR of 0.065 is reached for the Trapezoidal rule. In the second case, a MCAR

of 0.35 is gotten for weakly–dependent spatial correlation models, and 0.48 for strongly–dependent

models.

• Appendix A2. Álvarez-Liébana et al. [2017] (see Appendix A2) derive the functional estimation

and prediction of O.U. process, from the ARH(1) and ARB(1) frameworks. The consistency of the

formulated functional estimators and predictors is proved from the following a.s. inequalities (see

Proposition A2.2.1, Lemma A2.2.4, Remark A2.2.3 and Corollaries A2.2.1–A2.2.2 in Appendix A2),

in the norms of bounded linear operators on the Hilbert spaceH = L2
(
[0, h], β[0,h], λ+ δ(h)

)
and

on the Banach spaceB = C ([0, h]) (see also equations (3.3)–(3.4) in Chapter 3):

∥∥ρθ − ρθ̂n
∥∥
L(H)

≤a.s.

∣∣∣θ − θ̂n

∣∣∣h√h

3
+ 1, E

{∥∥ρθ − ρθ̂n
∥∥2
L(H)

}
≤ G

(
θ, θ̂n, n

)
,∥∥ρθ − ρθ̂n

∥∥
L(B)

≤a.s. h
∣∣∣θ − θ̂n

∣∣∣ , E
{∥∥ρθ − ρθ̂n

∥∥2
L(B)

}
≤ G

(
θ, θ̂n, n

)
,

where G
(
θ, θ̂n, n

)
= O

(
2θ
n

)
, as n goes to infinity, and θ̂n represents the maximum likelihood
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estimator of theta, which is strong consistent. Hence,

∥∥ρθ − ρθ̂n
∥∥
L(H)

−→a.s. 0,
∥∥ρθ − ρθ̂n

∥∥
L(B)

−→a.s. 0,∥∥(ρθ − ρθ̂n
)
(Xn−1)

∥∥
H

−→p 0 ,
∥∥(ρθ − ρθ̂n

)
(Xn−1)

∥∥
B
−→p 0.

From the simulation study, the empirical errors for the estimator ρθ̂n , in the norms L(H) and L(B),

are a.s. upper bounded by magnitudes of orders that lie within the band ±3
√

2θ
n

, at least, 99.33% of

the simulations, at each one of the scenarios generated. Thus, the almost surely convergence to zero of∥∥ρθ − ρθ̂n
∥∥
L(H)

and
∥∥ρθ − ρθ̂n

∥∥
L(B)

is empirically derived. The consistency of plug–in predictors

is also enlightened: prediction errors are smaller than 0.008, at least, 98% of the simulations.

• Appendix A3. Under suitable conditions, the following upper bounds are previously derived in

Álvarez-Liébana et al. [2017] (see also Propositions A3.3.1–A3.3.2 in Appendix A3),

E
{
∥ρ− ρ̂kn∥

2
S(H)

}
≤ g(n), E {∥(ρ− ρ̂kn) (Xn−1)∥H} ≤

√
g(n),

where g(n) = O
(

1
C2

kn
n

)
, as n→ ∞.The following limit results are then obtained:

lim
n→∞

E
{
∥ρ− ρ̂kn∥

2
S(H)

}
= 0, lim

n→∞
E {∥(ρ− ρ̂kn) (Xn)∥H} = 0,

where ρ̂kn has been introduced in equation (3.6) of Chapter 3, and kn satisfies the conditions for-

mulated in Appendix A3 (see conditions already displayed in equation (3.5) in Chapter 3). Here, as

before,Ckn denotes the kn–th eigenvalue ofC .

A simulation study has reflected the performance of the above estimator and plug–in predictor. Par-

ticularly, for truncation parameters kn = ⌈n1/α⌉, withα = 5 andα = 6, considering the functional

sample sizes n ∈ [15000, 395000], the empirical functional quadratic errors computed are of or-

der 10−4, and the prediction errors, in the norm of H, display a magnitude of order 10−3. Curves

n−3/4 andn−1/3 are numerically fitted, reflecting rates of convergence to zero of the empirical mean–

quadratic errors, in the Hilbert–Schmidt norm. In the simulation study undertaken for comparative

50



purposes, when theoretical eigenvectors are known, the empirical mean prediction errors, in the norm

ofH , are upper bounded by values of order10−3, for our parametric approach and those ones in Bosq

[2000]; Guillas [2001], but a better performance of our methodology is observed when small sample

sizes are tested. In the case when the eigenvectors ofC are, as usual, unknown, our approach outper-

forms, with empirical prediction mean errors of order lower than 10−2, those ones in Bosq [2000];

Guillas [2001]. On the other hand, for smaller sample sizes, wavelet–based predictors in Antoniadis

and Sapatinas [2003], and nonparametric and penalized predictors in Besse et al. [2000], are also

compared. Slightly improvements are observed for the kernel–based predictor, while the proposal

by Antoniadis and Sapatinas [2003] only outperforms our predictor when a very small number of

parameters must be estimated, i.e., for small values of the truncation parameter kn.

• AppendixA4. As commented in the previous chapter, the methodological contribution in Appendix

A4 is mainly related to the implementation, in practice, of the Hilbert–valued multivariate fixed effect

model introduced in Ruiz-Medina [2016]. Specifically, as commented, in more detail, in Chapter 3

(in particular, see equation (3.7)), we have analysed a special class of matrix covariance operators to

represent the functional correlation structure of the infinite–dimensional multivariate error term, as-

sumed, in our case, to be a standard ARH(1) process. The FANOVA analysis of this model has been

implemented for three types of domains (rectangular, disk and circular sector). In that sense, we have

studied the effect of the geometrical characteristics of the domain in the FANOVA analysis, when the

functional values of the error term satisfy a pseudodifferential equation, involving continuous func-

tions of the the Dirichlet negative Laplacian operator on such domains. On the other hand, we have

also implemented a significance test for the functional fixed effect parameters, based on a multivariate

version of the methodological approach presented in Theorem 4.1 in Cuesta-Albertos et al. [2007]

(see also Appendix A4 and previous chapter for more details).

We now refer to the numerical results obtained, in the simulation study undertaken, and in the real–

data application addressed, in the neuroimaging context. Specifically, for the different scenarios anal-

ysed, in the simulation study, for each one of the domains considered, the empirical functional mean–

quadratic errors are computed. In rectangular domains, the empirical functional mean–squares er-

rors, associated with the estimator of the fixed effect parameter vector, display a magnitude of order
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of 10−3, while an accuracy corresponding to an order of 10−2 can be observed for the estimated func-

tional response. In the case of circular domains, a better accuracy is attached. Regarding the numer-

ical results obtained, in the implementation of a significance test for the multivariate Hilbert–valued

fixed effect model analysed, for rectangular domains, the null hypothesis fails for at least 99.75% of

the simulations, at level α = 0.05 (i.e., the empirical power of the hypothesis test is 0.9975 for the

sample size tested), from the observations generated under the models considered, for the different

scenarios analysed. Similar rejection values are observed from the functional observations generated,

in the case of the circular sectors, since the null hypothesis fails for at least 97.45% of the simulations,

at levelα = 0.05; i.e., the empirical power of the hypothesis test is 0.9745 for the sample size tested.

For illustration purposes, Appendix A4.5 provides a real–data application, in relation to the fMRI

analysis. According to Worsley et al. [2002], brain is scanned at tridimensional pixels of dimensions

3.75 × 3.75 × 7mm. Specifically, concerning the significance of the two–dimensional functional

effects, p–values are, at most, of order 10−4, in the most of the random direction generated, from a

multivariate infinite–dimensional Gaussian distribution (i.e., in the most of the functional random

vectors generated, where projection is performed).

• Appendix A5. In Ruiz-Medina and Álvarez-Liébana [2017], under Assumptions A1, A2, A2B and

A4, the following results are derived (see Theorems A5.4.1–A5.4.2 and Remarks A5.2.2–A5.2.3 in

Appendix A5 below):

lim
n→∞

nE
{
∥ρ̃−n − ρ∥2S(H)

}
= lim

n→∞
nE
{
∥ρ̂n − ρ∥2S(H)

}
=

∞∑
j=1

σ2
j

Cj
<∞,

(see equations (A5.15) and (A5.20)–(A5.22), respectively) where, as before, n denotes the func-

tional sample size, and, for each j ≥ 1, the eigenvalueρj ofρ is asumed to satisfyρj ∼ B (aj, bj) .As

before, B (aj, bj) denotes the beta distribution with shape parameters aj and bj , under aj + bj ≥ 2.

Here,
{
σ2
j , j ≥ 1

}
and{Cj, j ≥ 1} are the respective eigenvalues ofCε andC (see the relationship

stated in equation (3.8)). Similar results have been established, for the associated plug–in predictors

(see Theorems A5.4.1–A5.4.2). In the simulation study undertaken, different rates of convergence to

zero of the eigenvalues of the autocovariance operator are analysed. In particular, three scenarios are
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generated. For the tested functional sample sizes in the range [250, 2000], the magnitudes of empir-

ical truncated mean–quadratic prediction errors, in the norm of H , are of order 10−3 for Examples

1–2 (considering a truncation order kn = 5; see Appendices A5.5.1–A5.5.2), while errors of order

10−4 are displayed in Example 3 for kn = ⌈n1/4.1⌉ (see Appendix A5.5.3).

• Appendix A6. We have derived additional asymptotic properties of the componentwise estimator

of ρ formulated in Bosq [2000] (see details in equation (3.9) in Chapter 3), under Assumptions

A1–A2 imposed in Appendix A6, and conditions over kn displayed in equation (3.10) above.

Alternatively, when ρ is compact and not necessarily symmetric, a new diagonal componentwise esti-

mator is formulated (denoted in Appendix A6.4 as ρ̂kn). Specifically, under Assumptions A1–A4 in

Appendix A6.4, and conditions in (3.11), we have (see Ruiz-Medina and Álvarez-Liébana [2018a],

and Remark A6.4.1 and Theorem A6.4.1)

∥ρ̂kn − ρ∥L(H) −→a.s. 0, n→ ∞.

• Appendix A7. Appendix A7 reviews the main contributions in the ARH(1) framework, as well as

provides a comparative study. Besides the wide review throughout the existing parametric, semi–

parametric and nonparametric methodologies, in Appendix A7.7, the main asymptotics of a diagonal

componentwise estimator of the autocorrelation operator, in the lines reflected in the monograph

by [Bosq, 2000, Chapter 8], is analysed, for the case of unknown eigenvectors (see Álvarez-Liébana

[2017] and Proposition A7.7.1 in Appendix A7.7). A simulation study is undertaken as well.

• AppendixA8. UnderAssumptionsA1–A5 in Ruiz-Medina and Álvarez-Liébana [2018b], and from

Lemmas A8.2.1–A8.3.8 and Remarks A8.3.4–A8.3.6 in Appendix A8, large deviations inequalities

and then, the strong consistency of the componentwise estimator displayed in (3.13), are derived,

in the norm of bounded linear operators on an abstract separable Banach space B, under suitable

conditions. The strong consistency of the corresponding plug–in predictor then follows. Specifically,

the following main results are obtained, assuming that kn verifies conditions in equation (3.14) in
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Chapter 3 (see also Theorem A8.5.1 and equation (A8.38) in Appendix A8):

P
(
∥ρ̃kn − ρ∥L(B) ≥ η

)
≤ K exp

(
−nη

2

Qn

)
, η > 0,

whereQn = O
({

C−1
kn
kn
∑kn

j=1 aj

}2
)
, as n→ ∞, and

a1 = 2
√
2

1

C1 − C2

, aj = 2
√
2max

(
1

Cj−1 − Cj
,

1

Cj − Cj+1

)
, j ≥ 2. (4.1)

In addition, under an extra condition over the truncation parameter kn (see equation (3.15) in

Chapter 3),

∥ρ̃kn − ρ∥L(B) →a.s 0, n→ ∞.

The approach presented is illustrated in terms of the scale of Besov spaces of fractional order. Em-

beddings theorems between Besov spaces are then applied. Large–sample behaviour of the ARB(1)

plug–in predictor, with truncation rule kn = ⌈ln(n)⌉, and sample sizes from 2500 to 165000 has

been analysed. The convergence rate to zero of the functional empirical mean quadratic errors is of

order n−1/4, in the infinite–dimensional truncated Gaussian scenario analysed. The effect of the dis-

cretization step size in the accuracy of the approach adopted is also illustrated, from different scenarios

of discretely observed functional data, when the discretization step size goes to zero (see Supplemen-

tary Material in Appendix A8).
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If your experiment needs a statisti-
cian, you need a better experiment

E. Rutherford (30th August 1871 - 19th October 1937)

5
CONCLUSIONS

Herein we discuss the more important conclusions derived from the theoretical and nu-

merical results presented in Appendices A1–A8 below, and already summarized in Chapter

4. These conclusions will allow us to propose different open research lines in Chapter 7

which could be addressed in the future. Conclusions in Spanish language can be found in

Chapter 6.
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• Appendix A1. As a conclusion, we have numerically implemented a new proposal for the kernel–

based classification of random surfaces. With this purpose, we have developed a numerical integra-

tion method for n–dimensional supported functions, particularly implemented to the computation

of FPCA and FPLSR semi–metrics for random curves and surfaces. In the light of the findings, we

can conclude that the choice of the univariate quadrature rule is not as trivial as it might seem at first

sight, since the accuracy between semi–metrics differs most notably when the Clenshaw–Curtis rule

is tested. In fact, a better performance is gained when Trapezoidal rule is implemented. This fact

may come from the definition of the Clenshaw–Curtis quadrature rule, in which expansions depend-

ing on trigonometric functions play a key role. Since FPLSR semi–metric depends not just on the

explanatory variables, but also on the response variable, this gap is strongly observed for the FPCA

semi–metric.

• Appendix A2. Achievements in Appendix A2 allow us to conclude that good asymptotic properties

are displayed by functional predictors of O.U., in Hilbert and Banach spaces, when the ARH(1) and

ARB(1) frameworks are adopted. Indeed they are similar to the ones displayed by the M.L.E of the

scale parameter θ.The
√
n–strong consistency of the estimator of the autocorrelation operator is also

illustrated in the simulation study undertaken, for both, Hilbert and Banach spaces.

• Appendix A3. The major contribution in Appendix A3 has been to establish the set of conditions re-

quired on the derivation of the convergence, in the mean–square sense, of a diagonal componentwise

estimator of the autocorrelation operator of an ARH(1) process, in the norm of Hilbert–Schmidt

operators, with the determination of a minimum rate of convergence. In the context of uncondi-

tional bases like wavelets for Besov spaces. This approach is suitable, providing information on the

n–asymptotic behaviour of the empirical point spectrum tail of the autocorrelation operator (and

hence, on the n–asymptotic local regularity of the empirical covariance operator). Note that this in-

formation is loss, when weaker norms, like the norm in the space of bounded linear operators, are

adopted, in the case of a compact autocorrelation operator.

• Appendix A4. As conclusions, we obtain that the FANOVA analysis performed is affected by the

geometry of the domain, that defines the support of the H–values of the response, in the infinite–
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dimensional multivariate fixed effect context analysed. Regarding significance hypothesis testing, a

multivariate version of Theorem 4.1 in Cuesta-Albertos et al. [2007] has been applied. Neuroimaging

analysis seems to be a suitable field of application of the theoretical results derived, as tested in the

real–data example analysed.

• Appendix A5. A more flexible framework is considered than in Bosq [2000], regarding the point

spectrum asymptotic of the autocorrelation operator of an ARH(1) process. Thus, a wider class of

autocorrelation operators is estimated in an asymptotic efficient way, from a classical and Bayesian

perspectives. The asymptotic equivalence of both, classical and Bayesian approximations, is proved,

as expected. As conclusion, the regularity of the autocovariance operator of the innovation process al-

lows the consideration of a more flexible class (probably, more singular) of autocorrelation operators,

in this standard ARH(1) framework.

• AppendixA6. The strong consistency, in the Hilbert–Schmidt and trace operator norms, of the com-

ponentwise estimator of the autocorrelation operator formulated in Bosq [2000] is proved, provided

that ρ belongs to those operator classes. In relation to the problem of the so–called curse of dimen-

sionality, a strongly–consistent diagonal componentwise estimator of ρ is formulated, in terms of its

empirical singular value decomposition, under suitable conditions. Thus, an important dimension re-

duction is reached. The set of required conditions, in particular, in terms of the truncation parameter,

and its relationship with the rate of convergence to zero, and the separation of the modulus square of

the singular values of ρ have been derived as well.

• Appendix A7. The survey in Appendix A7 has been focused on providing the reader with a com-

prehensive overview about the crucial aspects, concerning the estimation and prediction of linear

processes in functional spaces. Our diagonal approach therein formulated outperforms those ones

included in Bosq [2000]; Guillas [2000] when the truncation rule proposed in Bosq [2000] is used.

As noticed, Guillas [2001] ends up being the best performance, when the truncation rule therein

proposed is fixed. In addition, even when small sample sizes are compared, a better accuracy of our

approach can be observed, under pseudo–diagonal point spectrum autocorrelation scenarios. For

small sample sizes, only our approach and those ones formulated in Besse et al. [2000] seem to dis-
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play accuracy for kn = ⌈ln(n)⌉.The penalized predictor in Besse et al. [2000] has been shown to be

the most accurate, being less influenced by the regularity conditions. Despite these numerical results,

we would stress, as a drawback, that methodologies in Antoniadis and Sapatinas [2003]; Besse et al.

[2000] require large computational times.

• Appendix A8. A general abstract separable Banach context is studied in Appendix A8, beyond the

space of continuous functions on an interval, with the supremum norm, and the space of right con-

tinuous functions, with limit at the left, with the Skorokhod topology. In particular, an extension of

the results derived in [Bosq, 2000, Chapter 8] and Labbas and Mourid [2002] is obtained. Note that

continuity or right–continuity are usual minimal regularity assumptions satisfied by the functions in

those spaces. It is well–known that the Banach context is traditionally intended, in linear functional

time series framework, to find a finer scale of norms for measuring local regularity. In our case, the

opposite motivation arouses our interest, since, in some practical problems (see, for example, mete-

orological data problems addressed by Febrero-Bande et al. [2008]; Ignaccolo et al. [2014], among

others), the local singularity displayed by functional data should be measured in an accurately way.

Thus, our more flexible framework leads to the strongly–consistent estimation of ARB(1) processes,

whose functional values could neither be continuous nor differentiable. That is the case, for example,

of the solution to integro–differential or pseudo–differential equations of fractional order. In par-

ticular, the smoothing kernel norms appearing, for example, in Besov or Sobolev spaces of negative

order, allow the consideration of a wider class of autocovariance operators, beyond the usual trace

condition with respect to the L2–norm. The interest of our approach, in the statistical analysis of

functional time series, with values in nuclear spaces, is illustrated, in the simulation study undertaken

(see Appendix A8.6 and the Supplementary Material provided in Appendix A8.8). In particular, the

scale of fractional Besov spaces is considered, and wavelet bases are selected for projection.

61



62



A scientist in his laboratory is not
a mere technician: he is also a
child confronting natural pheno-
mena that impress him as though
they were fairy tales
Maria Sklodowska (7th November 1867 - 4th July 1934)

6
CONCLUSIONES

Este capítulo estará dedicado a la discusión de las conclusiones derivadas de los resul-

tados presentados en los trabajos aquí incluidos (ver Apéndices A1–A8). Dichas conclu-

siones nos permitirán plantear posibles líneas futuras de investigación (ver Capítulo 7),

las cuales quedan fuera del alcance de la presente tesis.
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• ApéndiceA1. En el Apéndice A1 se ha detallado de forma explícita una propuesta para la clasificación

no paramétrica (de tipo núcleo) de superficies aleatorias. Con este propósito, hemos desarrollado un

método de integración numérica para funciones con soporte n–dimensional, implementado, en par-

ticular, al cálculo numérico de las semi–métricas FPCA y FPLSR para curvas y superficies aleatorias.

En base a los resultados obtenidos se concluye el papel fundamental que juega la elección de la regla

de cuadratura, decisión que no es tan trivial como pudiera antojarse a primera vista. Esta diferencia

en cuanto a la calidad de la clasificación se hace más evidente cuando se aplica la regla de Clenshaw–

Curtis, lo cual parece lógico ya que dicha regla de cuadratura viene definida por desarrollos en serie,

en términos de funciones trigonométricas. Dado que la semi–métrica FPLSR no solo depende de las

variables explicativas sino también de la variable respuesta, esta discrepancia en la proporción de mal

clasificados puede apreciarse más fácilmente para la semi–métrica FPCA.

• Apéndice A2. Los resultados derivados en el Apéndice A2 nos permiten concluir sobre las bue-

nas propiedades asintóticas de los predictores plug-in considerados par el proceso O.U., en espacios

de Hilbert y Banach separables, cuando se adoptan los contextos de procesos ARH(1) y ARB(1).

Como se detalla en secciones anteriores, estos resultados pueden ser de gran interés en el contexto

financiero. En particular, hemos probado la
√
n–consistencia fuerte del estimador del operador de

autocorrelación involucrado, tanto en espacios de Hilbert como de Banach.

• Apéndice A3. La mayor contribución del Apéndice A3 ha sido establecer condiciones suficientes

para la convergencia en media cuadrática de un estimador diagonal, definido componente a compo-

nente, del operador de autocorrelación, en el contexto de procesos ARH(1), cuando se considera

la norma de los operadores de Hilbert–Schmidt, obteniendo un ratio mínimo de convergencia. Se

ilustran, mediante ejemplos concretos, en el escenario Gaussiano, la verificación de las condiciones

asumidas en Álvarez-Liébana et al. [2017] (ver también Apéndice A3.4). La ventaja de obtener re-

sultados de consistencia, en términos de la norma de los operadores de Hilbert–Schmidt, es la car-

acterización asimismo del comportamiento n–asintótico de las colas del espectro puntual empírico

del operador de autocorrelación, resultados que no se suelen inferir cuando se adoptan normas más

débiles.
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• Apéndice A4. Los resultados aquí desarrollados nos permiten deducir la importancia que tiene la

geometría de los dominios cuando llevamos a cabo un análisis funcional de la varianza, en términos

de variables funcionales con soportes espaciales; tal es el caso del modelo multivariante de efectos

fijos funcionales analizado. Con respecto a los test de hipótesis para contrastar la significación de

los parámetros funcionales de efectos fijos, se ha formulado una versión multivariante del Teorema

4.1 establecido en Cuesta-Albertos et al. [2007]. La ilustración de dichos resultados se ha realizado

mediante una aplicación, con datos reales, para el análisis estadístico de resonancias magnéticas de

tipo fMRI.

• Apéndice A5. En dicho apéndice hemos considerado, bajo un escenario Gaussiano, un conjunto

de condiciones que nos proporciona un escenario más flexible que el propuesto en Bosq [2000],

planteando condiciones asintóticas alternativas respecto al espectro puntual del operador de autocor-

relación de un proceso ARH(1). Así, hemos conseguido estimar una clase más amplia de operadores

de autocorrelación, de forma asintóticamente eficiente y desde una perspectiva tanto clásica (frequen-

tista) como Bayesiana, jugando un papel fundamental la regularidad del operador de autocovarianza

de las innovaciones. Como en el caso real–valuado, hemos obtenido la equivalencia asintótica de am-

bas aproximaciones. Podemos concluir, por tanto, que la regularidad del operador de autocovarianza

de las innovaciones nos ha permitido trabajar con una clase más flexible de operadores de autocor-

relación, que la comúnmente adoptada en procesos ARH(1) estándar.

• ApéndiceA6. Hemos probado cómo el estimador componente a componente del operador de auto-

correlación de un proceso ARH(1), formulado en Bosq [2000], es también fuertemente consistente

en las normas traza y de Hilbert–Schmidt, siempre que ρ pertenezca a dichas clases de operadores.

Por otro lado, en el contexto de técnicas alternativas para resolver el problema de dimensionalidad

inherente, se ha propuesto una estimación diagonal fuertemente consistente del operador de auto-

correlación ρ, basada en su descomposición empírica en valores singulares, asumiendo que dicho

operador es compacto pero no necesariamente Hilbert–Schmidt ni simétrico. De la misma forma, se

han derivado condiciones suficientes sobre el parámetro de truncamiento, de acuerdo a la caída del

módulo de los valores singulares de ρ, y a la separación de los mismos, para garantizar la consistencia
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fuerte de dicho estimador.

• Apéndice A7. La revisión bibliográfica realizada en el Apéndice A7 proporciona una breve introdu-

cción a las técnicas estaísticas formuladas en el análisis de las series temporales funcionales. Adicional-

mente, se ilustra numéricamente, la mayor precisión del estimador diagonal, respecto a los resultados

predictivos obtenidos a partir de los estimadores formulados en Bosq [2000]; Guillas [2000], cuando

se adopta la regla de truncamiento propuesta en Bosq [2000]. Se han considerado escenarios diag-

onales o pseuodiagonales, mientras que si usamos la regla de truncamiento establecida en Guillas

[2001], el predictor allí formulado proporciona los resultados predictivos más precisos. Para tamaños

muestrales pequeños, destacamos la precisión de los estimadores formulados en Besse et al. [2000] y

su robustez frente a las condiciones de regularidad del modelo, para kn = ⌈ln(n)⌉.Desde un punto

de vista práctico, las metodologías de estimación propuestas en Antoniadis and Sapatinas [2003];

Besse et al. [2000] son poco eficientes, en relación con el tiempo de computación.

• Apéndice A8. En el Apéndice A8 se ha adoptado el contexto de espacios de Banach abstractos se-

parables, más allá de los espacios comúnmente estudiados, que contienen a las funciones continuas

sobre un intervalo, con la norma del supremo, y a las funciones continuas por la derecha con límite

por la izquierda, con la topología de Skorokhod. En particular, nuestra metodología puede enten-

derse como una extensión de los resultados ya derivados en [Bosq, 2000, Capítulo 8] y Labbas and

Mourid [2002]. Como es bien sabido, el análisis estadístico de datos funcionales con valores en es-

pacios de Banach ha venido tradicionalmente motivado, dentro del contexto de series temporales

lineales funcionales, por la búsqueda de una escala de normas más fina que la topología usual L2,

que permita medir la regularidad local. En nuestro caso particular, nuestra motivación ha sido justo

la contraria. Específicamente, nuestro interés es capturar y analizar, de forma adecuada, la singulari-

dad local de datos funcionales, la cual es fundamental en problemas tales como los abordados en el

campo de la meteorología (ver, por ejemplo, Febrero-Bande et al. [2008]; Ignaccolo et al. [2014]).

Este marco teórico flexible nos ha permitido derivar un estimador fuertemente consistente del ope-

rador de autocorrelación de un proceso ARB(1), cuyas trayectorias funcionales no tengan por qué

ser continuas, ni diferenciables, satisfaciendo, en sentido débil, por ejemplo, una ecuación integro–
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diferencial o pseudo–diferencial de orden fraccionario. Destacar como el suavizamiento inducido

por las normas involucradas, por ejemplo, en los espacios de Besov y Sobolev de orden negativo, nos

permite considerar una gama más amplia de operadores de autocovarianza, al margen de los clásicos

operadores asumidos como traza en la normaL2. Como ya se ha mencionado en secciones anteriores,

el interés de nuestro enfoque se ha ilustrado numéricamente (ver el estudio de simulación llevado a

cabo en el Apéndice A8.6 y el Material Suplementario aportado en el Apéndice A8.8) mediante el

análisis estadístico de series temporales funcionales, con valores en espacios nucleares. En particular,

se ha considerado la escala continua de espacios de Besov de orden fraccionario, aplicando la carac-

terización de su norma en términos de proyecciones en bases de funciones wavelets.

68





70



A recent survey has demonstrated
that one in seven billion human be-
ings is you

L. Piedrahita (19th February 1977 - )

7
OPENRESEARCHLINES

We briefly discussed the major current research lines in which we are working and that

could be raised in the future, in keeping with the results and conclusions herein reached.
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• Appendix A1. The extension of the results obtained to the case of correlated random surfaces con-

stitutes the subject of the subsequent investigation.

• Appendix A4. The extension of the results derived to a more general modelling context, involving

weakly dependent error processes (see Hörmann and Kokoszka [2010]) could be addressed in the

near future. Also the multivariate Hilbert–valued mixed effect model context will constitute the sub-

ject of subsequent research lines.

• AppendixA5. The extension of the results derived, beyond the restriction on the existence of a com-

mon eigenvectors system, diagonalizing the autocovariance and autocorrelation operators, should

also be addressed. The case of alternative prior distributions could also be investigated as well.

• Appendix A8. One of the first subjects to address in the near future, in this research line, will be the

analysis of functional (or high–dimensional) real–data applications, where local singular behaviours

are observed, and must be measured in a properly way, for functional prediction of the magnitude

of interest. That is the case, for example, of functional data related to circadian rhythms and sleep

quality, as well as physical activity tracking (see, e.g., Gruen et al. [2017]; Lee et al. [2017]; Sathya-

narayana et al. [2016]). Currently, we are working on the estimation of ARBX(1) processes; i.e.,

ARB(1) processes with exogenous variables. This framework is motivated by the forecasting of pollu-

tants particles, such as PM10 pollutants, displaying an erratic local behaviour in time, which are heavily

dependent on meteorological variables (see, e.g., Poggi and Portier [2011]). Since PM10 are inhal-

able atmospheric pollution particles, its forecasting has became crucial aimed at adopting efficient

public transport policies. The ARBX(1) estimation is being addressed, in terms of an ARB(1)-like

matrix representation, involving exogenous functional random variables, in the spirit of [Bosq, 2000,

Chapter 5, p. 128], where the ARH(1) matrix formulation of ARH(p) processes allows its estimation

and prediction.

The extension of the theoretical results derived in this appendix in terms of stronger operator norms,

than the norm in L(B), constituted the subject of subsequent research.

• Hypotheses testing. The formulation of different approaches for hypotheses testing, in the mod-

elling contexts analysed in this dissertation, is one of the most relevant open research line.
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ABSTRACT

This paper addresses, in a nonparametric functional statistical framework, the problem of classification of non–
linear features of curve and surface data in control systems. Specifically, on the one hand, in the detection of non–
linear dynamic features, wavelength absorbance curve data are analysed for different meat pieces to discriminate
between two categories of meat in quality control in food industry. On the other hand, in the nonparametric func-
tional classification of deterministic and random surface roughness and irregularities, in the field of railway engineer-
ing, train deterministic and random vibrations are analysed to discriminate between different non–linear features
characterizing roughness and irregularities of railway.

A1.1 Introduction

Non–linear dynamics and features in the data can be captured and suitable analysed within the func-
tional statistical framework. Temporal and spatial functional statistics are relatively recent branches of Statis-
tics, where non-parametric statistical techniques are now been developing to approximate the non-linear
functional form of the probability distribution underlying to a sequence of random curves, surfaces, etc. In
this context, new criteria for curve classification are proposed (see Ferraty and Vieu [2006]; Ramsay and
Silverman [2005], among others). These procedures for random curve classification are designed in the ab-
sence or in the presence of interactions between different individuals, as well as between different times (see
Aach and Church [2001]; Ferraty and Vieu [2006]; Hall et al. [2001]; James and Hastie [2001]; Liu and
Müller [2003]; Müller and Stadtmüller [2005]). In James and Hastie [2001], a variant of linear discrimi-
nant analysis, in terms of the curve projections assuming a Gaussian distribution with common covariance
matrix for all classes, is considered in the setting of filtering methods. Specifically, minimization of the dis-
tance to the group mean is the criterion adopted in this functional classification methodology. In Hall et
al. [2001] a likelihood-based approach based on quadratic discriminant analysis is presented. They propose
a fully nonparametric density estimation, and, in practice, multivariate Gaussian densities are considered.
Dealing with non–linear discriminant algorithms, the learning optimal kernel for Kernel Fisher Discrimi-
nant Analysis (KFDA) is proposed in Ge and Fan [2013] to be able to optimize a combination of weight
coefficients and kernels. In a generalized linear model framework, the model-based functional classifica-
tion procedures proposed in Hidalgo and Ruiz-Medina [2012]; Leng and Müller [2006] are implemented.
Specifically, for dimension reduction, Functional Principal Component Analysis (FPCA), and local wavelet-
vaguelette decomposition are considered. K-nearest neighbor method is applied to Fourier coefficients in
Biau et al. [2003]. Wavelet bases are selected for projection in Berlinet et al. [2008]. In James and Sugar
[2003] spline bases are considered in a random effect model context, combining the best properties of fil-
tering and regularization methods. These methods are effective when the observations are sparse, irregularly
spaced or occur at different time points for each subject (see also Abraham et al. [2003], where B-splines
bases are previously chosen for projection in the application of k-means-based classification procedure). In
Ghosh and Kaabouch [2014], a support vector machine is used to scene classification, in order to construct
an effective clustering procedure for real time applications, in particular, for image sequence classification
depending on several factors.

76



Functional nonparametric statistical classification procedures, based on kernels, are extensively devel-
oped in the context of statistical learning methods (see, for example, Scholkopf and Smola [2002]). In this
framework, the unknown function is estimated, considering its optimal approximation in a functional class
given by a Reproducing Kernel Hilbert Space (RKHS), under some prescribed criterion. Chaos game repre-
sentation and multifractal analysis can also be considered in the classification of functional protein sequences
displaying singular features (see, for instance, Yang et al. [2009a,b]).

This paper deals with the functional statistical nonparametric classification of non-linear random func-
tions withn–dimensional support (e.g., curves, surfaces, etc). They are assumed to be uncorrelated random
functions. As motivation for illustration of the proposed functional nonparametric statistical methodol-
ogy, we address two problems in the applied areas of food industry and railway engineering. Specifically,
fat content is first analysed for classification of meat pieces, from the observation of spectrometric curve
data corresponding to the absorbance measured at 100 wavelengths. On the other hand, in the random sur-
face discrimination context, the statistical analysis of train deterministic and random vibrations is achieved
from the nonparametric functional statistical classification of rail roughness and irregularities. The results
obtained, after the implementation of the proposed classification methodology are showed in Appendices
A1.4 and A1.6, respectively. In such an implementation, an extended version of the classification algorithm
formulated in Ferraty and Vieu [2006] is derived. Namely, numerical integration is performed by applying
the Smolyak quadrature rule, after interpolation over a finer n–dimensional grid the values observed at a
coarser grid, which constitutes our actual functional dataset. Different semi-metrics can then be applied,
mainly based on FPCA and Functional Partial Least Squares Regression (FPLSR), which is an extension
of Partial Least Squares technique (see, e.g., Oladunni [2013]). In addition, the kernel estimation of the
posterior probability of belonging to each one of the categories defining the response provides us a rule for
classification of the observed n–dimensional supported functional data in a nonparametric statistical con-
text.

The resulting classification procedure for non-linear random functions with n-dimensional support, in
the context of nonparametric functional statistics, allows discrimination in a more flexible framework. In
particular, this paper provides an extension to the two–dimensional case of the one–dimensional models
proposed in Fryba [1999]; Mohammadzadeh et al. [2013]; Youcef et al. [2013], among others, for the anal-
ysis of imperfections of railway track. These irregularities are the second source of bridge vibrations and the
first one of train vibrations, and can be classified into non-random and random irregularities (as the rough-
ness of the rails). The dynamics of these railway tracks under moving trains must be taken into account in
order to construct and design the railway bridges and beams, as well as to locate and construct the railway
stations and surrounding buildings. The effects of rail roughness and rail irregularities on the dynamic be-
haviour of bridge and vehicles are considered in Mohammadzadeh et al. [2013]; Youcef et al. [2013]. In this
paper, the non-random imperfections are represented in terms of a two-dimensional function perturbed by
Gaussian white noise, reflecting the measurement device error, while the random ones will be defined in
terms of zero-mean Gaussian random surfaces, displaying different non-linear spatial patterns according to
their spatial correlation structure.

The outline of the paper is as follows. Appendix A1.2 presents some preliminaries definitions and ele-
ments involved in the functional statistical nonparametric classification algorithm studied in Ferraty and
Vieu [2006]. Appendix A1.3 establishes the main steps of the proposed classification algorithm for n-
dimensional supported non-linear random functions, and in particular, for random curves and surfaces. The
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application of this algorithm to spectrometric curve data for meat piece classification according to fat con-
tent is illustrated in Appendix A1.4. Appendix A1.5 provides a training simulation study to discriminate
between different trend surfaces in Gaussian random surface classification. A simulation study is under-
taken in Appendix A1.6 for illustration of the proposed functional classification methodology for perturbed
deterministic and random irregularities in the surface of railway track. Conclusions are drawn in Appendix
A1.7.

A1.2 Preliminaries about functional non–parametric classification

Let us first introduce the preliminary elements and definitions, as well as the required notation for the
description of the curve statistical functional classification algorithm proposed by Ferraty and Vieu [2006]
in a nonparametric framework.

Assume that T = (tmin, tmax) is an interval in R. We shall use the notation:

• χ = {χ(t), t ∈ T} for representing a functional random variable (f.r.v.); that is, a random variable
χ that takes values in an infinite–dimensional space.

• χ functional data (f.d.) denotes an observation ofχ.

• We shall denote a funcional dataset (f.dat.) {χi, i = 1, . . . , n} as the observation of n–sample f.r.v

{χi, i = 1, . . . , n} ∼ χ.

Different families of semi-metrics mainly based on FPCA (see Jackson [2004], among others), FPLSR,
and derivatives are commonly used to measure distances between curves. In the context of
infinite–dimensional spaces, they are usually computed by numerical integration, considering, in our case,
n–dimensional integration based on suitable quadrature rules.

A1.2.1 Functional Principal Component Analysis (FPCA)

This technique is based on projection into the eigenvector system of the covariance operator, obtain-
ing a series expansion of the f.r.v. defining our data set, in terms of uncorrelated r.v., with scale parameters
given by the square root of the associated eigenvalues. It is well-known that PCA (with euclidean metric) is
formulated as follows:

zi =
⟨vi,x⟩
∥vi∥

=
1

∥vi∥

p∑
j=1

vi,jxj =
1

∥vi∥
vTi x, zi ∈ R, vi,x ∈ Rp, i = 1, . . . , p,

x =

p∑
j=1

ejxj ≡
p∑
j=1

vjzj, x, e ∈ Rp
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being e = (e1, . . . , ep) and vi = (vi,1, . . . , vi,p) orthonormal bases in Rp, where, for i = 1, . . . , p,

E
{
z2i
}
= λi, λ1 ≥ λ2 ≥ . . . ≥ λp.

In the infinite–dimensional case, we consider the spaces Lp with respect to a measure µ, introduced in
terms of the semi-norm ∥ · ∥p, given by

∥f∥p :=
(∫

|f (x) |pµ (dx)
) 1

p

.

In particular, we concentrate in the case of p = 2, where we have a Hilbert space structure. Recall the
fundamental definitions associated with this case.

Definition A1.2.1 LetAbe a linear operator. A functionf ̸= 0 is an eigenfunction ofA if and only ifA (f) = λf.

Definition A1.2.2 Let (H, ⟨·, ·⟩H) be a real valued pre-Hilbert space with the inner product

⟨f, g⟩H =

∫
f(x)g(x)w(x)dx, ∀f, g ∈ H,

wherew is a weight function. Two functions f, g are then orthogonal if and only if

⟨f, g⟩H = 0.

The resulting series expansions in PCA (on left) and FPCA (on right) are given as follows, when
{vj, j ≥ 1} are normalized:

zj = ⟨vj,x⟩H , zj =

∫
χ(x)vj(x),

x =

p∑
j=1

vjzj, χ(x) =
∞∑
j=1

vj(x)zj.

Thus, for the infinite-dimensional case we have

χ(z) =
∞∑
j=1

(∫
χ(x)vj(x)dx

)
vj(z),

and its truncated version can be written as

χ̂(q)(z) =

q∑
j=1

(∫
χ (x) vj (x) dx

)
vj(z). (A1.1)
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From (A1.1), the following semi–norm can be defined:

dFPCAq (χ1,χ2) =

√√√√ q∑
j=1

(∫
[χ1 − χ2] (x) vj (x) dx

)2

From a practical point of view, the above integrals are approximated by a quadrature rule. Specifically, for
the observed discretized curves, namely,x1 andx2, the following numerical approximation is computed:

dFPCAq (x1,x2) =

√√√√ q∑
j=1

(
I∑
i=1

wi [x1 − x2] (ti) vji

)2

(A1.2)

where {ti, i = 1, . . . , I} are the nodes, 1 ≤ q ≤ n the number of components chosen and

Σχ (s, t) =
1

n

n∑
i=1

χi (s)χi (t)

the empirical version of the covariance kernel (i.e., its empirical matrix approximation), being
{vj = (vj1, . . . , vjI) , j = 1, . . . , q} the empirical eigenvectors of

W1/2ΣW1/2, W = diag (w1, . . . , wI)

being a diagonal matrix with non–null entries given by the quadrature weights provided by a quadrature rule.

A1.2.2 Functional Partial Least Squares Regression (FPLSR)

The Multivariate Partial Least Squares Regression (MPLSR) is an extension of PLSR motivated by deal-
ing with multivariate response or when the number of predictors is very large in comparison with the number
of observations.

We can apply MPLSR with only one scalar response but it would be inadequate with regard to the com-
plexity of functional data. Hence, we are going to construct a multivariate response binary matrix where
each column j represents if the i–th observation belongs to class j. Such as FPCA technique, we can extend
MPLSR to FPLSR in functional framework, providing usg components depending on a number of factors q,
which plays similar role to the number of dimensions retained in FPCA. The main difference between FPCA
and FPLSR comes from the fact that the FPCA explains only the predictors, whereas the FPLSR approach
computes a simultaneous decomposition of the set of predictors and responses, being able to explain both
predictors and responses. Thus, we get a similar FPCA formula:

dFPLSRq (x1,x2) =

√√√√ g∑
j=1

(
I∑
i=1

wi [x1 − x2] (ti) v
q
ji

)2

where vq1, . . . ,vqg are performed by FPLSR.
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A1.2.3 Semi–metrics based on derivatives

Lastly, we introduce the semi–metric based on derivatives. That is, theL2 distance between the deriva-
tives of different orders of two given curves is established as a measure of closeness in the following way:

dderivq (χ1, χ2) =

√∫ (
χ
(q)
1 − χ

(q)
2

)2
(x) dx

where χ(q) is the q–th derivative of χ and dderiv0 = dL2 .
To avoid stability problems with derivatives, a B–spline basis approximation is usually considered (see,

e.g., de Boor [1978]; Schumaker [1981]). Using the discretized curvexi = (χi(t1), . . . , χi(tI)), we obtain
the following approximation:

χ̂i(·) =
B∑
b=1

β̂ibBb(·) χ̂
(q)
i (·) =

B∑
b=1

β̂ibB
(q)
b (·)

where {B1, . . . , BB} is a B–spline basis. Thus, for numerical approximation of

dderivq (x1,x2) =

√∫ (
χ̂
(q)
1 (x)− χ̂

(q)
2 (x)

)2
dx,

a quadrature rule is considered. Note that B–spline basis allow to work even with unbalanced data sets.

A1.2.4 Numerical integration: quadrature rules

To define all of these semi–metrics in a functional space, numerical integration in terms of a quadrature
rules is required. Let see a brief about them.

There is a large variety of one–dimensional numerical integration procedures, as the trapezoidal rule
(see Gerstner [2007]), the Clenshaw–Curtis rule (see, e.g, Kaarnioja [2013]; Novak and Ritter [1998])
and rules introduced in Burkardt [2011]. We could also use stochastic simulation applying methods such
as Monte Carlo (MC) and Quasi-Monte Carlo methods (QMC) (see, for example, Gerstner and Griebel
[1998]). We will restrict our attention to numerical integration, since a set of weights is needed.

According to Gerstner [2007]; Kaarnioja [2013], in the following, we consider functions f(x) from a
regular function class:

Cr (Ω) :=
{
f : Ω ⊂ Rn → R,

∥∥∥∥∂sf∂xs
∥∥∥∥
∞
<∞, s ≤ r

}
.

As we will see, the goal is to approximate the integral
∫
Ω

f(x)dx in a subset Ω ⊂ Rn, by a sequence of

nl–point quadrature, with nl = 2l−1 + 1.
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A1.2.5 Functional nonparametric supervised classification of random curves

As described in Ferraty and Vieu [2006], we now observe a f.r.v χ and a categorical response y that
represents the class membership of each element. The main aim is to be able to predict the class membership
of a new f.d., by means of a nonparametric rule.

Denoting by (E, d) a semi–metric space andG = {1, . . . , G} a set of integers, we consider

(χi,yi) ∼ {χ,y, i = 1, . . . , n} ,

to be a sample of n independent pairs inE ×G.Thus, (χi, yi) denotes an observation of (χi,yi)i=1,...,n ,
and (xi, yi), withxi = (xi,1, . . . , xi,I) being the discretization of (χi, yi).

Applying the Bayes rule, our goal is estimatepg (χ) = P (Y = g|χ = χ) = E {1Y=g|χ = χ}
(
g ∈ G

)
,

doing the assignment:

ŷ (χ) = argmax
g∈G

p̂g (χ) (A1.3)

where p̂g (χ) = (p̂1 (χ) , . . . , p̂G (χ)) are the estimate posterior probabilities and 1Y=g is the indicator
function.

LetK be a kernel function and Λ : Rp → R a function (an operator in the infinite–dimensional case)
which we want to estimate. We define the kernel smoother as:

Kh (χ,χi) := K

(
d (χ,χi)

h (χ)

)
,

whereK is a positive kernel function that decreasing with the distance betweenχi andχ,h (χ) is a positive
bandwidth, depending onχ.Therefore, we can use the truncated kernel regression estimator ofΛ proposed
in Nadaraya [1964]; Watson [1964], in an infinite–dimensional setting, as follows:

Λ̂ (χ) :=

n∑
i=1

Kh (χ,χi) Λ (χi)

n∑
i=1

Kh (χ,χi)

, (A1.4)

where Λ (χi) = E {1Yi=g|χi = χi} = 1yi=g = pg (χi) = 1.Thus, according to (A1.4):

p̂g,h (χ) =

n∑
i=1

K

(
d (χ,χi)

h (χ)

)
1yi=g

n∑
i=1

K

(
d (χ,χi)

h (χ)

) =
∑

{i:yi=g}

wi,h (χ) (A1.5)
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withwi,h (χ) =
K

(
d (χ,χi)

h (χ)

)
n∑
i=1

K

(
d (χ,χi)

h (χ)

) .

If we choose a kernel thatK (x) = 0 if |x| < 1 results:

p̂g,h (χ) =
∑
i∈J

wi,h (χ)

where J = {i : yi = g} ∩ {i : d (χ,χi) < h}.

A1.2.6 Bandwidth selection

Finally, we have to choose h with the goal of minimizing a loss function that depends on p̂g,h (χi, yi)’s
and yi’s:

hLoss = arg inf
h
Loss(h) (A1.6)

With this aim, we will replace the choice ofh among an infinite setHwith an integer parameterk among
a finite subset K, by the consideration of k-Nearest Neighborhood (kNN) discretized version of (A1.6):

p̂g,k (x) =

∑
i∈J

K

(
d (x,xi)

hk (x)

)
n∑
i=1

K

(
d (x,xi)

hk (x)

)
where hk is such that {i : d (x,xi) < hk} = k. Thus, we have to find kLoss = argmin

k∈K
Loss(k). From

now on, we consider p̂g,k the estimator of p̂g .
If we use the cross–validation procedure proposed in Ferraty and Vieu [2006] and choose as loss func-

tion

Loss (k) = LCV (k, i0) =
G∑
g=1

(
1yi0=g − p

(−i0)
g,k (xi0)

)2
, (A1.7)

where

p
(−i0)
g,k (xi0) =

∑
i∈J , i ̸=i0

K

(
d (xi0 ,xi)

hk (xi0)

)
n∑

i=1, i ̸=i0

K

(
d (xi0 ,xi)

hk (xi0)

) ,
and xi0 is the nearest neighbour of x, so we denote i0 = arg min

i=1,...,n
d (x,xi). Hence, the local choice is

the following:
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kLCV (xi0) = argmin
k
LCV (k, i0)

kLCV (xi0) −→ hk = hLCV (xi0)

Miss. Rate =

n∑
i=1

1yi ̸=yLCV
i

n

A1.3 Nonparametric classification of uncorrelated surfaces

Let us consider
ψ = {ψ (x1, . . . , xn) , (x1, . . . , xn) ∈ Rn}

a random n–dimensional supported f.r.v. The observed realization ψ ofψ is referred a n–dimensional f.d.
In the particular case of n = 2, that is, of R2, a regular grid is chosen with nodes having coordinates
((x1, y1) , . . . , (xN , yM)) .Hence, in the following, we refer to anM ×N rectangular regular grid.

A1.3.1 Reformulation of semi–metrics

The corresponding reformulation of semi-metric based on FPCA is straightforward. In particular, when
n = 2,we have

dFPCAq (ψ1, ψ2) =

√√√√ q∑
j=1

(
I∑
i=1

wix
∗
i vji

)2

,

where 1 ≤ q ≤ n the number of components chosen, Σχ (s, t) = 1
n

n∑
i=1

χi (s)χi (t) is the empirical

version of the covariance kernel, {vj, j = 1, . . . , q} , are the orthonormal eigenvectors (corresponding to
the components chosen) of empirical covariance matrix

W1/2ΣW
1/2
I×I , W = diag (w1, . . . , wI)

whose diagonal entries are two–dimensional quadrature weights, and

(x∗1, . . . , x
∗
I) = ((ψ1 − ψ2) (x1, y1) , . . . , (ψ1 − ψ2) (xN , yM)) , (A1.8)

remains being a real vector, with I = N ×M . As previously, (xi, yj, i = 1, . . . , N, j = 1, . . . ,M) ∈
D ⊂ R2 represents the set of nodes of a regular rectangular grid, with associated discretized functional
value of the observed f.d. given by (ψ (x1, y1) , . . . , ψ (xN , yM)) ,which can also be treated as a real vector
associated with the discrete observation ofψ.
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Reformulation of FPLSR in the two–dimensional case can be derived in a similar way. Thus,

dFPLSRq (ψ1, ψ2) =

√√√√ g∑
j=1

(
I∑
i=1

wix
∗
i v
q
ji

)2

where {x∗i , i = 1, . . . , I} , are given as in equation (A1.8), and
(
vq1, . . . ,v

q
g

)
are performed by FPLSR.

Although it is out of our scope, semi-metrics based on derivatives can be also reformulated by consid-
ering the corresponding L2 norm of the corresponding partial derivatives. In particular, for n = 2, non-
uniform rational B–spline (NURBS) can be used (see, e.g., Schneider [2014]; Schoenberg [2012]).

A1.3.2 Smolyak quadrature

We will describe the n–dimensional version of the Smolyak quadrature rule to obtain a set of weights,
defining, in particular, the metric W 1/2ΣW 1/2, in the numerical approximation of the integral by a
weighted sum of values of the integrand at certain nodes (see, e.g.,Gerstner and Griebel [1998]; Kaarnioja
[2013]).

The main goal is to approximate

InWf :=

∫
n∏
i=1

Ii

f (x1, . . . , xn)
n∏
i=1

Wi (xi) dxi

by a n–sequence of klj –point quadratures, with klj = 2lj−1 + 1 and j ∈ {1, . . . , n}:

Ulj :=

klj∑
i=1

wif (xi) =
2lj−1+1∑
i=1

wif (xi)

with lj ≥ 1. Smolyak rule combines, by means of tensor products, univariate quadratures rules{
Ulj , j = 1, . . . , n

}
, respectively associated with each dimension j, for j = 1, . . . , n (e.g., Trapezoidal

rule, Clenshaw–Curtis’s rule, Gauss–Legendre’s rule, Gauss-Patterson’s rule, etc).

Definition A1.3.1 Let S : C (Ω) → R and T : C (Ξ) → R be operators that admit a representation of the
form:

Sf (x) =
m∑
i=1

aif (xi)

Tg (y) =
n∑
j=1

bjg (yj) ,
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with positive weights, x = (x1, . . . , xm) and y = (y1, . . . , yn). The tensor product of S and T is the linear
operator S ⊗ T : C (Ω× Ξ) → R defined by:

Sf ⊗ Tg (x,y) =
m∑
i=1

n∑
j=1

aibjf (xi) g (yj) .

Let
{
U

(j)
lj
, j = 1, . . . , n

}
be a sequence of univariate quadrature rules, where j represents the dimen-

sion in which we are integrating and klj = 2lj−1 + 1 the number of evaluation points. This univariate rules
are chosen in such a way such that I1Wj

p = U
(j)
lj

, where p is a polynomial of degree at most klj .

We denote as
{
w

(j)
i , i = 1, . . . , klj

}
and

{
x
(j)
i , i = 1, . . . , klj

}
the weights and the nodes, respec-

tively, of the univariate rule U (j)
lj
, for j = 1, . . . , n. Thus, the original problem can be approximated in

tensor product form:

InWf ≈
n⊗
j=1

U
(j)
lj
f = Qn

k (A1.9)

with
{
U

(j)
lj

}
= klj = 2lj−1 + 1 and l = (l1, . . . , ln) ,with lj ≤ k ∀j ∈ {1, . . . , n} .

In fact, Smolyak quadrature rule proposed in Gerstner [2007]; Kaarnioja [2013] uses difference opera-
tors instead of directly applying the tensor product.

Definition A1.3.2 Let
{
U

(j)
i , i = 1, . . . ,∞

}
be a sequence of univariate rules in Ij . We define the difference

operators in Ij as:

∆
(j)
0 = 0, ∆

(j)
1 = U

(j)
1 , ∆

(j)
i+1 = U

(j)
i+1 − U

(j)
i .

Thus, Smolyak quadrature rule of order k in the n–dimensional rectangle I1 × . . . × In (for simplicity we
assume In = I × . . .× I) can be defined as the operator:

Qn
k =

∑
∥α∥1≤k

n⊗
j=1

∆(j)
αj

(A1.10)

whereα ∈ Nn and αj > 0 (which implies that k ≥ n). Remark that in the case of n = 1, Q1
k = U

(1)
k .
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Figure A1.3.1: Product grids X
(1)
i1

×X
(1)
i2

such that ∥(i1, i2)∥∞ ≤ 3 (on left) and the Q2
4 grid (on right).

Since there are many terms that are removed, we shall also present a combination method of Smolyak
rules (see, e.g.,Wasilkowski and Wozniakowski [1995]):

Qn
k =

∑
m≤∥α∥1≤k
α∈Nn, α≥1

(−1)k−∥α∥1
(

n− 1

k − ∥α∥1

) n⊗
j=1

U (j)
αj

withm = max {n, k − n+ 1}.
Rewritting (A1.10) and using (A1.9), we obtain:

Qn
k =

k∑
l=m

∑
∥α∥1=l

α∈Nn, α≥1

kα1∑
j1=1

. . .

kαn∑
jn=1

c(k, n, l)wj,αf (xj,α) (A1.11)

where c(k, n, l) = (−1)k−l
(
n−1
k−l

)
,wj,α = w

(α1)
j1

. . . w
(αn)
jn

andxj,α =
(
x
(α1)
j1

. . . x
(αn)
jn

)
.

A1.3.2.1 Numerical implementation

The main steps and auxiliary functions in the implementation of the Smolyak’s quadrature are the fol-
lowing :

• Step1Define the function that provides us univariate nodes and weights (univariate quadrature rules
at each dimension).
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• Step2Generate all multi-indices satisfying restrictions established in the algorithm proposed in Ger-
stner [2007]. For instance, if n = 3 and k = 5, α could be (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1),
(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2) and (2, 2, 1).

• Step 3 Determine, for any vector sequence
(
v(i)
)l
i=1

, with v(i) ∈ Rni , i = 1, . . . , l, its vector

combination. Thus, we define inductively cv,l = combvec
((
v(i)
)l
i=1

)
as follows:

cv,l =

(
cv,l−1 . . . cv,l−1 . . . cv,l−1 . . . cv,l−1

v
(l)
1 . . .

(nl−1)
v
(l)
1 . . . v

(l)
nl . . .

(nl−1)
v
(l)
nl

)

with cv,1 = v(1) = (v
(1)
1 . . . v

(1)
n1 ).

In addition, we have implemented two more functions. A function that groups weights associated at the
same node, and auxiliary function that deletes the nodes with total weight equal to zero. Smolyak’s nodes
are different from the nodes where we have our observations, so we previously interpolate our f.dat. con-
sidering locally polynomials or k–Nearest Neighbourhood Smoother. The assignment of weights is done
in two ways: To each interpolated node, we assign the weight corresponding to the Nearest Neighbour
Smolyak’s node; or, alternatively, we assign the weight defined by the average of the weights associated with
the kSmolyak–Nearest Neighbourhood Smolyak’s nodes.

A1.4 Functional classification results of curves

methodology, as well as of the one formulated in Ferraty and Vieu [2006] is now compared in terms
of their implementation from a spectrometric curve dataset available at http://lib.stat.cmu.edu/
datasets/tecator. This dataset is related to quality control in food industry. It corresponds to a sample
of finely chopped meat. For each unit i, among 215 pieces, we observe one spectrometric curve which
corresponds to the absorbance measured at 100 wavelengths. Moreover, we have measured its fat content
{yi, i = 1, . . . , 215} , obtained by an analytical chemical processing.

In the implementation of the classification procedure for validation purposes, our f.dat. sample has been
randomly split into two sub–samples respectively corresponding to the training f.dat. sample, which consti-
tutes a 70% of the total dataset, and a f.dat. validation sample or test sample, which in our case constitutes a
30% of the total sample.

Figure A1.4.1 shows spectrometric f.dat. The magnitude plotted is absorbance versus wavelength for
different pieces, where 100 channel spectrum of absorbances are showed. Hence, each data appears as a
discretized curve in 100 points, and interpolation is performed to get the corresponding values in a finer
partition of the set containing the 100 points within the same wavelength interval 850− 1050 (see Figure
A1.4.3). Two categories or groups are distinguished in advance: fat content under 20 (yi = 1) and over 20
(yi = 2) (see Figure A1.4.2).
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Figure A1.4.1: Discretized spectometric curves.

Figure A1.4.2: Discretized curves splitted by groups: the blue ones belong to class 1 (low fat content)
and the red ones belong to class 2 (higher fat content).
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Figure A1.4.3: Accuracy of interpolation of a curve at each category, with step called stepmesh.

Figure A1.4.4 shows the results obtained using FPCA semi–metric, when different kernels (quadratic,
indicator and triangle) and inputs (components, factors or orders) are considered, using the methodology
given in Ferraty and Vieu [2006], by means of 50 simulations.
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FigureA1.4.4: Misclassification rate of functional classification using the method proposed in Ferraty and
Vieu [2006], with FPCA semi–metric.

Figure A1.4.5 shows the results obtained using FPLSR semi–metric, when different kernels and inputs
are considered, using the methodology given in Ferraty and Vieu [2006].
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FigureA1.4.5: Misclassification rate of functional classification using the method proposed in Ferraty and
Vieu [2006], with FPLSR semi–metric.

Figure A1.4.6 shows the results obtained using a semi–metric based on derivatives, when different ker-
nels and inputs are considered.
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FigureA1.4.6: Misclassification rate of functional classification using the method proposed in Ferraty and
Vieu [2006], with semi–metric based on derivatives.

At each one of these box–plots, we reflect results obtained with implementation of a quadratic kernel in
the first three ones, the next three ones reflect results with indicator kernel, and the three last ones show the
results with triangle kernel. Alternatively, Figures A1.4.7–A1.4.9 display the results using our methodology
in terms of the Smolyak’s quadrature rule considering three neighbours, implementing the Trapezoidal rule
with k = 5 and using discretization step equal to 0.25.

93



Figure A1.4.7: Results obtained with our implementation using the Trapezoidal rule (at level 5), with
discretization step equal to 0.25 and 3 neighbours, with FPCA.
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Figure A1.4.8: Results obtained with our implementation using the Trapezoidal rule (level 5), with dis-
cretization step equal to 0.25 and 3 neighbours, with FPLSR.
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Figure A1.4.9: Results obtained with our implementation using the Trapezoidal rule (level 5), with dis-
cretization step equal to 0.25 and 3 neighbours, with semi–metric based on derivatives.

Figures A1.4.10–A1.4.12 show different implementations of our methodology with different inputs
such as the Clenshaw–Curtis’s quadrature rule or doing directly the assignment of Smolyak’s weights. A sim-
ilar performance is obtained in comparison with the previous results displayed. One can observe that our
methodology is more flexible than the one presented in Ferraty and Vieu [2006]. However, our methodol-
ogy is also affected by the interpolation error, and the error associated with the rule considered for the as-
signing of weights. This fact can also be observed in Figures A1.4.13–A1.4.14, where we have used a greater
interpolation step. Note that a slight improvement in the accuracy can be appreciated. Summarizing, we
have to look for a compromise between precision in the numerical approximation of the integral, increasing
the number of points in the sample by interpolation, and the associated interpolation and weight allocation
errors.
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Figure A1.4.10: Results obtained with our implementation using the Clenshaw–Curtis’s rule (at level 5),
with discretization step equal to 0.25 and 3 neighbours.

Figure A1.4.11: Results obtained with our implementation using the Trapezoidal rule (at level 7), with
discretization step equal to 0.25.
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Figure A1.4.12: Results obtained with our implementation using the Clenshaw–Curtis’s rule (at level 7),
with discretization step equal to 0.25.

Figure A1.4.13: Results obtained with our implementation using the Trapezoidal rule (at level 5), with
discretization step equal to 0.45.
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Figure A1.4.14: Results obtained with our implementation using the Clenshaw–Curtis’s rule (at level 5),
with discretization step equal to 0.45.

A1.5 NumericalexampleforfunctionalclassificationoftrendinrandomGaus-
sian surfaces

A sample of 200 Gaussian random surfaces is generated, over a regular grid within the square [1, 5] ×
[1, 5], with the same integral covariance operator defined by the isotropic Gaussian kernel in two dimen-
sions. These Gaussian surfaces have two different (which lead to the definition of our two groups), but
very close, functional means (see Figure A1.5.1). Our problem consists in discriminating between different
trends defining the mean value of Gaussian surfaces. This numerical example is considered previously to our
main simulation study developed in the next section where, among other subjects, we solve the problem of
discrimination between different spatial correlation functions characterizing the infinite–dimensional dis-
tribution of zero–mean Gaussian random surfaces.

Let us then consider the following two groups of Gaussian random surfaces:

χ1 ∼ N
(
µ1 = {hi, i = 1, . . . , k} ,Σ = CCT

)
(A1.12)

χ2 ∼ N
(
µ2 = µ1 + v,Σ = CCT

)
where

hi =
i

N ×M
+ 2, i = 1, . . . , k, k = N ×M,

with v = (0.5, 0.5, . . . , 0.5) ∈ RN×M , and Cij = e−∥(xi,yi)−(xj ,yj)∥22 , where χj denotes a random
surface of type j = 1, 2, with values defined over a regular grid given by ((x1, y1) , . . . , (xN , yM)) . We
have imposed a minimum number of surfaces belonging to each class.
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FigureA1.5.1: Surfaces plotted: on left surface belongs to category 1, on right surface belongs to category
2.

Note that now we have not to interpolate since we can generate surfaces as finely as wanted. A minimum
number of surfaces belonging to each class is fixed to ensure the representativeness of the groups. As com-
mented, in the previous implementation of our methodology in terms of curves, we restrict our attention to
the FPCA and FPLSR semi-metrics. Figures A1.5.2–A1.5.3 then display the derived classification results,
reflecting a good performance of our methodology for discrimination between different trends of Gaussian
surfaces, keeping in mind that the two categories distinguished are very close.

FigureA1.5.2: Results obtained with our implementation for surfaces using the Clenshaw–Curtis’s rule (at
level 7) on a 20× 20 spatial regular grid.
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Figure A1.5.3: Results obtained with our implementation for surfaces using the Trapezoidal rule (at level
7) on a 20× 20 spatial regular grid.

Consider now two groups respectively based on a linear and a non-linear, cosine type, trend surfaces:

µ2 = cos
(
µ1

π

2

)
,

whereµ1 is given as before. For a lower resolution level, namely for a 12 × 12 regular grid, FPLSR clearly
outperforms FPCA (see Figure A1.5.4). Thus, FPLS is more suitable for well-differentiated groups when
numerical integration must be performed from a low quality discrete version of our surface dataset.

Figure A1.5.4: Results obtained with our implementation for surfaces using Trapezoidal rule (at level 4)
on a 12× 12 spatial regular grid.
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A1.6 Functional classification results of random and non–random surface
irregularities of railway track

The problem of deterministic and random vibration classification from the observation of surface ir-
regularities of railway track will be addressed in this section, which constitutes a key problem in the field
of railway engineering. As commented in Mohammadzadeh et al. [2013], it is very important to modeling
these irregularities since the created loads resulting from them cause fatigue in the vehicles and rail beams.
According to Youcef et al. [2013], the rail irregularities are the second leading cause of bridge vibrations,
and the first one of train vibrations.

Two types of rail irregularities are studied in Mohammadzadeh et al. [2013]; Youcef et al. [2013]: ran-
dom and non–random irregularities. Random irregularities include the roughness of the rails. Here, these
irregularities are represented in terms of zero-mean Gaussian surfaces with different spatial functional corre-
lations. Deterministic irregularities are usually represented in terms of a irregularity function of the railway
r(x) (see, for example, Fryba [1999]).

A1.6.1 Non-random surfaces irregularities

As proposed in Mohammadzadeh et al. [2013]; Youcef et al. [2013] approach, an one–dimensional
railway track is firstly considered. We can see in the example shown in FigureA1.6.1 that a simple beam of
span lengthL = 50m is analysed. We denote asB the distance from the origin to the first irregularity, and
A the constant rail length between two imperfections (see Figure A1.6.1).

Figure A1.6.1: Illustrative and very simple example of the approach, with L = 50 m and N = 3.

Setting the number of these irregularities in the railway track of lengthL, denoted asN , and considering
the depth and the length of the imperfections (ζ and η respectively, as shown in Figure A1.6.1), we can
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establish the following formula:

N =
L−B

A+ η
(A1.13)

Let us now consider three different models of imperfections: N1 = 3 and B1 = 4.5; N2 = 4 and
B2 = 2.5 andN3 = 5 andB3 = 1.We divide each one of them into two models using different values of
A, and using two different values of ζ , the final set of models is given in Table A1.6.1:

Table A1.6.1: Final models.

Models N B (m) A (m) ζ (m)
Model 1 3 4.5 3.5 0.007
Model 2 3 4.5 5.2 0.007
Model 3 3 4.5 3.5 0.015
Model 4 3 4.5 5.2 0.015
Model 5 4 2.5 3.5 0.007
Model 6 4 2.5 5.2 0.007
Model 7 4 2.5 3.5 0.015
Model 8 4 2.5 5.2 0.015
Model 9 5 1 3.5 0.007
Model 10 5 1 5.2 0.007
Model 11 5 1 3.5 0.015
Model 12 5 1 5.2 0.015

Choosing any of them, and using formula (A1.13), we can get the corresponding set of values of η (see
Table A1.6.2):
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Table A1.6.2: Set of values of η.

Models η (m)
Model 1 11.667
Model 2 9.967
Model 3 11.667
Model 4 9.967
Model 5 8.375
Model 6 6.675
Model 7 8.375
Model 8 6.675
Model 9 6.300
Model 10 4.600
Model 11 6.300
Model 12 4.600

As proposed in Fryba [1999], for each one of these models, denoted as {Mi, i = 1, . . . , 12}, the non–
random irregularities can be mathematically defined by the following function:

r (x) =

{
ζ
2

(
1− cos

(
2πx
η

))
ifC ≤ x ≤ C + η

0 elsewhere
(A1.14)

whereC = B + k (A+ η) , k = 0, 1, . . . , N.
As we want to deal with surfaces, in this paper we shall extend this approach to the two-dimensional

framework. Such as the rail width is quite smaller than L, we use a anisotropic model where the imperfec-
tions are deployed through the x-axis (see Figures A1.6.2).
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Figure A1.6.2: Illustrative and very simple example of the two-dimensional approach, with L = 50 m,
W = 2.5 m and N = 3.

Extending equation (A1.14) and settingW = 2.5,we have

r (x, y) =

{
ζ
2

(
1− cos

(
2πx
η

))
ifC ≤ x ≤ C + η

0 elsewhere

whereC = B + k (A+ η) , k = 0, 1, . . . , N and y ∈ [0,W ] .
As well as in previous sections we have been working with a square regular grid, where the length coin-

cides with the width, a rectangular grid, withL = 50m andW = 2.5m is used now. In Appendix A1.3.2,
for simplicity we have assumed In = I × · · · × I, but this implementation used in the previous section is
not valid here, and we have to recalculate all the steps of the proposed numerical integration algorithm for
functional classification of noisy Gaussian surfaces. We have then obtained from formula (A1.11):

Qn
k =

k∑
l=m

∑
∥α∥1=l
α∈Nn

α≥1

kα1∑
j1=1

. . .

kαn∑
jn=1

c(k, n, l)wj,αf (xj,α) (A1.15)

where c(k, n, l) = (−1)k−l
(
n−1
k−l

)
,wj,α = w

(α1)
j1

. . . w
(αn)
jn

andxj,α =
(
x
(α1)
j1

. . . x
(αn)
jn

)
.

Note that, in the previous section, x(αi)
ji

∈ I, for all i = 1, . . . , n. However, we now compute x(αi)
ji

such as x(αi)
ji

∈ Ii ∀i = 1, . . . , n. Rewritting (A1.15), we obtain:

Qn,L
k =

k∑
l=m

∑
∥α∥1=l
α∈Nn

α≥1

kα1∑
j1=1

. . .

kαn∑
jn=1

c(k, n, l)wj,αf (xj,α)
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where c(k, n, l) = (−1)k−l
(
n−1
k−l

)
, wj,α = w

(α1)
j1

. . . w
(αn)
jn

are the weights of the U (j)
lj

univariate quadra-

ture in Ij , xj,α =
(
x
(α1)
j1

. . . x
(αn)
jn

)
∈ I1 × · · · × In andL is an interval matrix where Lij = aij, i =

1, . . . , n, j = 1, 2, with Ii = (ai1, ai2) .
Figures A1.6.3–A1.6.5 provide a zoom of the generated irregularity models for the two-dimensional

deterministic case.
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Figure A1.6.3: Irregularity belongs to model M3.
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Figure A1.6.4: Irregularity belongs to model M5.
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Figure A1.6.5: Irregularity belongs to model M12.

It is assumed that our observed irregularities are measured by a device that introduces and additive zero-
mean Gaussian noise. That is, they are perturbed by such a noise as follows:

Si (x, y) = r (x, y) + ε (x, y) (A1.16)

for i = 1, . . . , 12,models considered, and for ε (x, y) ∼ N (µ = 0,Σ = σ2
i Id) being a Gaussian white

noise with standard deviation σi = ηi
2
, i = 1, . . . , 12. Figures A1.6.6–A1.6.8 show again a zoom of the

perturbed Gaussian surfaces.

108



0

10

20

30

40

50

0

1

2

3

4

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

x

Eta= 1.166667e+01, Eps= 1.500000e−02, A= 3.500000e+00, B= 4.500000e+00, N= 3, sigma= 7.500000e−03

y
 

r x

−0.02

−0.01

0

0.01

0.02

0.03

Figure A1.6.6: Irregularity perturbed belongs to model M3.

109



0

10

20

30

40

50

0

1

2

3

4

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

x

Eta= 8.375000e+00, Eps= 7.000000e−03, A= 3.500000e+00, B= 2.500000e+00, N= 4, sigma= 3.500000e−03

y
 

r x

−0.01

−0.005

0

0.005

0.01

0.015

Figure A1.6.7: Irregularity perturbed belongs to model M5.
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Figure A1.6.8: Irregularity perturbed belongs to model M12.

We consider a regular grid corresponding to discretization steps 1.3 in length, and 0.3 in width. A min-
imum number of surfaces belonging to each group has been set and 50 simulations have been running. Ap-
plying the same methodology as the one used in Appendix A1.5 with a sample of 500 surfaces, we obtain
the results shown in Figure A1.6.9.
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Figure A1.6.9: Results obtained with our implementation for non–random irregularities using the Trape-
zoidal rule (at level 7).

Remark that the accuracy depends on the magnitude of σi, i = 1, . . . , 12, and the length of the gap
between the irregularities (A). One can observe that to a greater σi, i = 1, . . . , 12, corresponds a better
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performance. For the same reason, we get a better accuracy using a greater value ofA (see Figure A1.6.10).
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Figure A1.6.10: Results obtained with our implementation for non-random irregularities using the Trape-
zoidal rule (at level 7) and Anew = (1.5, 2.2) instead of previous A = (3.5, 5.2).
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A1.6.2 Random surfaces irregularities

As commented before, rail imperfections can be divided into deterministic and random imperfections.
Different factors may be the cause of these random irregularities, as imperfections in material or in rail joints,
errors during design, among others.

We are going to focus on the little roughness of the rails, which is included in random imperfections,
by means of Gaussian surfaces. Since we will consider little roughness, distributions with null mean will
be considered, taking into account that the origin of ordinate axis is represented by the rail. Generating a
sample of 200 Gaussian surfaces, we will distinguish the following four categories of roughness (see Figures
A1.6.11–A1.6.14):

χh ∼ N
(
µh = 0,Σ = ChC

T
h

)
(A1.17)

where h = 1, 2, 3, 4 identifies our categories, and

Chij =
kh
LW

e
−∥(xi

L
,
yi
W )−(

xj
L

,
yj
W )∥

2
kh (h = 1, 3)

represents the correlation structure model for each grouph = 1, 3,within the family of Ornstein–Uhlenbeck
covariance kernels, and

Chij =
kh
LW

e
−∥(xi

L
,
yi
W )−(

xj
L

,
yj
W )∥2

2
kh (h = 2, 4)

within the family of spatial correlations functions given by the non–linear isotropic Gaussian kernel, using a
vector of scaleskh = (0.04, 0.04, 0.06, 0.06) .Both correlation models correspond to weak dependence in
space (see Figures A1.6.11–A1.6.14). As previously, a minimum number of surfaces belonging to each class
has been fixed, and the two-dimensional rectangle [0, L]× [0,W ] has been considered, with discretization
step size 1.3 in length, and discretization step size 0.3 in width.
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FigureA1.6.11: Random surface belongs to category 1, using the isotropic Ornstein–Uhlenbeck covariance
kernel and kh = 0.04 (weak correlated model).
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FigureA1.6.12: Random surface belongs to category 2, using the isotropic Gaussian covariance kernel and
kh = 0.04 (weak correlated model).
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FigureA1.6.13: Random surface belongs to category 3, using the isotropic Ornstein–Uhlenbeck covariance
kernel and kh = 0.06 (strong correlated model).
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FigureA1.6.14: Random surface belongs to category 4, using the isotropic Gaussian covariance kernel and
kh = 0.06 (strong correlated model).

One can observe from the random surfaces displayed in Figures A1.6.11–A1.6.14, that the random sur-
faces with covariance matrix given by the isotropic Gaussian kernel display a smoother local behaviour than
the ones with Ornstein–Uhlenbeck correlation kernel. Note that the first ones display stronger spatial cor-
relations (see equation (A1.17)). Parameter kh within each spatial functional correlation family represents
the spatial dependence range (scale parameter) of each random surface class. Applying our methodology as
in Appendix A1.6.1 with a sample of 200 surfaces, the following results are obtained (see Figure A1.6.15):
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FigureA1.6.15: Results obtained with our implementation for random irregularities using Trapezoidal rule
(at level 7), using a weak correlated model.

Weak correlated surfaces, e.g., kh = (0.04, 0.04, 0.5, 0.5) , are displayed in Figures A1.6.16–A1.6.17,
while Figures A1.6.18–A1.6.19 show strong-correlated surfaces.
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FigureA1.6.16: Random surface belongs to category 1, using the isotropic Ornstein–Uhlenbeck covariance
kernel and kh = 0.04 (weak spatial correlated surfaces).
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FigureA1.6.17: Random surface belongs to category 2, using the isotropic Gaussian covariance kernel and
kh = 0.04 (weak spatial correlated surfaces).
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FigureA1.6.18: Random surface belongs to category 3, using the isotropic Ornstein–Uhlenbeck covariance
kernel and kh = 0.5 (strong spatial correlated surfaces).
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FigureA1.6.19: Random surface belongs to category 4, using the isotropic Gaussian covariance kernel and
kh = 0.5 (strong spatial correlated surfaces).

The classification results are displayed in Figure A1.6.20, from the implementation of our proposed func-
tional statistical methodology to discriminate between strong and weak correlated Gaussian surfaces.
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Figure A1.6.20: Results obtained with our implementation for random irregularities using the Trapezoidal
rule (at level 7), using a weak spatial correlation model.

Finally, to discriminate between strong spatial correlated surfaces (smoother surfaces), the following
values of parameter kh are considered kh = (0.2, 0.2, 0.6, 0.6) (see Figures A1.6.21–A1.6.24). The core-
sponding classification results are showed in Figure A1.6.25.

124



0

10

20

30

40

50

0

1

2

3

4

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

 

x

L= 50, W= 2.500000e+00,k= [0.2         0.2         0.6         0.6]

y
 

r x

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

FigureA1.6.21: Random surface belongs to category 1, using the isotropic Ornstein–Uhlenbeck covariance
kernel and kh = 0.2 (strong spatial correlated random surface).
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FigureA1.6.22: Random surface belongs to category 2, using the isotropic Gaussian covariance kernel and
kh = 0.2 (strong spatial correlated random surface).
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FigureA1.6.23: Random surface belongs to category 3, using the isotropic Ornstein–Uhlenbeck covariance
kernel and kh = 0.6 (strong spatial correlated random surface).
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FigureA1.6.24: Random surface belongs to category 4, using the isotropic Gaussian covariance kernel and
kh = 0.6 (strong spatial correlated random surface).
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Figure A1.6.25: Results obtained with our implementation for random irregularities using the Trapezoidal
rule (at level 7), from strong spatial correlated random surfaces.

We can appreciate a better performance of the functional classification methodology proposed when the
non-linear Gaussian random surfaces analysed display weak correlation, inducing a higher degree of local
singularity which facilitates the detection of such a more pronounced roughness in the railway track.
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A1.7 Conclusions

In all our implementations, different kernels have been considered, as quadratic, indicator and triangle
kernels; and different inputs have been used. We improved the accuracy when we increase the number of
evaluations in the Smolyak’s quadrature rule in both the Trapezoidal and Clenshaw–Curtis’s rule.

In Appendices A1.4–A1.5, we obtain a better performance using the Trapezoidal rule. This is explained
by the fact that the Clenshaw–Curtis’s quadrature rule is a truncated expanding in the series of trigonometric
functions; thus, it looks natural that we obtain less accuracy. This became increasingly evident using FPCA
semi–metric (see also Appendix A1.6). With these results, we notice that the choice of univariate quadrature
rule is not as trivial as it might seem at first sight. Such as the FPCA semi–metric only depends on the data,
its accuracy is more affected by the choice of nodes. Meanwhile, the MPLSR semi–metric also depends on
responses that are not affected by the quadrature rule. For that reason, FPLSR semi–metric provides us a
better performance than FPCA case. Note also that that the semi-metric based on derivatives is the more
accuracy (see Appendix A1.4).

One can observe that with greater interpolation step (see Appendix A1.4) or a finer grid (see Appendices
A1.5–A1.6), a slight improvement is obtained due to associated interpolation error and weight allocation
error.

In Appendix A1.5, note also that the two categories distinguished in surfaces classification are very close.
Also, for well–differentiated categories or groups, FPLSR outperforms FPCA when low–quality data are
available or when numerical integration rules are applied at low resolution levels.

The noisy non–random irregularities studied in Appendix A1.6 provide us 12 categories to discriminate,
corresponding to 12 irregularity models {Mi, i = 1, . . . , 12}. Despite having a large number of categories
and the closeness between perturbed surfaces, Figure A1.6.9 show us a good performance of our algorithm,
such as we obtain a relatively low missclassification rate. In the light of the results shown in Figure A1.6.10, it
was concluded that the smaller the distanceA between irregularities, the greater the missclassification rate
is, since they are more difficult to distinguish to each other.

The surface classification problem addressed in Appendix A1.6 leads us to the following general conclu-
sion: the best performance of our proposed functional classification methodology is obtained when deter-
ministic surfaces perturbed by additive Gaussian white noise are considered (non–linear model with random
perturbation). While, in the Gaussian random surface case considered, a better performance is achieved
when weak spatial correlated surfaces must be discriminated against strong spatial correlated surfaces. On
the other hand, the worst performance is observed when we have to discriminate between smoother random
surfaces, corresponding to strong spatial correlated zero–mean Gaussian surfaces.

Summarizing, the real–data based and the numerical results showed allow us to confirm that our pro-
posed implementation for general n–dimensional supported non–linear random and deterministic func-
tions can offer an extended version of the previous implementation by Ferraty and Vieu [2006], in a more
flexible way, allowing classification of n–dimensional supported deterministic and random surfaces in par-
ticular.
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ABSTRACT

Newresults on functional prediction of theOrnstein–Uhlenbeckprocess, in autoregressiveHilbert-valuedandBanach–
valued frameworks, are derived. Specifically, consistency of the maximum likelihood estimator of the autocorrela-
tion operator, and of its associated plug–in predictors, is obtained in both frameworks.

A2.1 Introduction

This paper derives new results in the context of linear processes in function spaces. An extensive litera-
ture has been developed in this context in the last few decades (see, for example, Bosq [2000]; Ferraty and
Vieu [2006]; Ramsay and Silverman [2005]; among others). In particular, the problem of functional pre-
diction of linear processes in Hilbert and Banach spaces has been widely addressed. We refer to the reader
to the papers by Bensmain and Mourid [2001], Bosq [1996, 2002, 2004, 2007], Guillas [2000, 2001],
Mas [2002, 2004, 2007], Mas and Menneteau [2003a]; Menneteau [2005], Labbas and Mourid [2002];
Mokhtari and Mourid [2003]; Mourid [2002, 2004] Rachedi [2004, 2005]; Rachedi and Mourid [2003],
Dedecker and Merlevède [2003]; Dehling and Sharipov [2005]; Glendinning and Fleet [2007]; Kargin and
Onatski [2008]; Ruiz-Medina [2012], Marion and Pumo [2004]; Pumo [1998] and Turbillon et al. [2008,
2007]; and the references therein. In the above–mentioned papers, different projection methodologies have
been adopted in the derivation of the main asymptotic properties of the formulated functional parameter
estimators and predictors. Particularly, Bosq [2000]; Bosq and Blanke [2007] apply Functional Principal
Component Analysis (FPCA); Antoniadis et al. [2006]; Antoniadis and Sapatinas [2003]; Laukaitis and
Vasilecas [2009] propose wavelet–bases–based estimation methods. Applications of these functional esti-
mation results can be found in the papers by Antoniadis and Sapatinas [2003]; Damon and Guillas [2002];
Hörmann and Kokoszka [2011]; Laukaitis [2008]; Ruiz-Medina and Salmerón [2009]; among others.

We here pay attention to the problem of functional prediction of the Ornstein–Uhlenbeck (O.U.) pro-
cess (see, for example, Uhlenbeck and Ornstein [1930]; Wang and Uhlenbeck [1945], for its introduction
and properties). See also Doob [1942] for the classical definition of O.U. process from the Langevin (linear)
stochastic differential equation. We can find in Kutoyants [2004]; Liptser and Shiraev [2001] an explicit ex-
pression of the maximum likelihood estimator (MLE) of the scale parameter θ, characterizing its covariance
function. Its strong consistency is proved, for instance, in Kleptsyna and Breton [2002]. We formulate here
the O.U. process as an autoregressive Hilbertian process of order one (so–called ARH(1) process), and as an
autoregressive Banach–valued process of order one (so–called ARB(1) process). Consistency of the MLE
of θ is applied to prove the consistency of the corresponding MLE of the autocorrelation operator of the O.U.
process. We adopt the methodology applied in Bosq [1991], since our interest relies on forecasting the val-
ues of the O.U. process over an entire time interval. Specifically, considering the O.U. process {ξt, t ∈ R}
on the basic probability space (Ω,A,P),we can define

Xn(t) = ξnh+t, 0 ≤ t ≤ h, n ∈ Z, (A2.1)
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satisfying

Xn (t) = ξnh+t =

∫ nh+t

−∞
e−θ(nh+t−s)dWs = ρθ (Xn−1) (t) + εn (t) , n ∈ Z, (A2.2)

with

ρθ (x) (t) = e−θtx (h) , ρθ (Xn−1) (t) = e−θt
∫ nh

−∞
e−θ(nh−s)dWs,

εn (t) =

∫ nh+t

nh

e−θ(nh+t−s)dWs,

(A2.3)

for 0 ≤ t ≤ h, whereW = {Wt, t ∈ R} is a standard bilateral Wiener process (see Supplementary Mate-
rial A2.5). Thus,X = {Xn, n ∈ Z} satisfies the ARH(1) equation (A2.2) (see also equation (A2.4) below
for its general definition). The real separable Hilbert space H is given by
H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
, where β[0,h] is the Borel σ-algebra generated by the subintervals in

[0, h] , λ is the Lebesgue measure and δ(h)(s) = δ (s− h) is the Dirac measure at point h. The associ-
ated norm

∥f∥H =

√∫ h

0

(f(t))2 dt+ (f(h))2, f ∈ H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
,

establishes the equivalent classes of functions given by the relationship f ∼λ+δ(h) g if and only if(
λ+ δ(h)

)
({t : f (t) ̸= g (t)}) = 0,

with (
λ+ δ(h)

)
({t : f (t) ̸= g (t)}) = 0 ⇔ λ ({t : f (t) ̸= g (t)}) = 0 and f (h) = g (h) ,

where, as before, δ(h) is the Dirac measure at point h. We will prove, in Lemma A2.2.1 below, that
X = {Xn, n ∈ Z} , constructed in (A2.1) from the O.U. process, satisfying equations (A2.2)–(A2.3),
is the unique stationary solution to equation (A2.2), in the spaceH = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
, admit-

ting a MAH(∞) representation. Similarly, in Lemma A2.2.4 below, we will prove thatX = {Xn, n ∈ Z},
constructed in (A2.1) from the O.U. process, satisfying equations (A2.2)–(A2.3), is the unique stationary
solution to equation (A2.2), admitting a MAB(∞) representation, in the space B = C ([0, h]) , the real
separable Banach space of continuous functions, whose support is the interval [0, h] , with the supremum
norm.

The main results of this paper provide the almost surely convergence to ρθ of its MLE ρθ̂ , in the norm of
L(H), the space of bounded linear operators in the Hilbert spaceH (respectively, in the norm ofL(B), the
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space of bounded linear operators in the Banach spaceB). The convergence in probability of the associated
plug–in ARH(1) and ARB(1) predictors (i.e., the convergence in probability of ρθ̂(Xn−1) to ρθ(Xn−1) in
H andB, respectively) is proved as well.

The outline of this paper is as follows. In Appendix A2.2, the main results of this paper are obtained.
Specifically, Appendix A2.2.1 provides the definition of an O.U. process as an ARH(1) process. Strong
consistency in L(H) of the estimator of the autocorrelation operator is derived in Appendix A2.2.2. Con-
sistency inH of the associated plug–in ARH(1) predictor is then established in Appendix A2.2.3. The cor-
responding results in Banach spaces are given in Appendix A2.2.4. For illustration purposes, a simulation
study is undertaken in Appendix A2.3. Final comments can be found in Appendix A2.4. The basic prelimi-
nary elements, applied in the proof of the main results of this paper, and the proof of Lemma A2.2.1, can be
found in the Supplementary Material A2.5.

A2.2 Prediction ofO.U. processes inHilbert and Banach spaces

In this section, we consider H to be a real separable Hilbert space. Recall that a zero–mean ARH(1)
processX = {Xn, n ∈ Z}, on the basic probability space (Ω,A,P), satisfies (see Bosq [2000])

Xn(t) = ρ (Xn−1) (t) + εn(t), n ∈ Z, ρ ∈ L(H), (A2.4)

where ρ denotes the autocorrelation operator of process X. Here, ε = {εn, n ∈ Z} is assumed to be a
strong–white noise; i.e., ε is a Hilbert–valued zero-mean stationary process, with independent and identi-
cally distributed components in time, with σ2 = E {∥εn∥2H} <∞, for all n ∈ Z.

A2.2.1 O.U. processes as ARH(1) processes

As commented in Appendix A2.1, equations (A2.1)–(A2.3) provide the definition of an O.U. process
as an ARH(1) process, withH = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
.The norm in the spaceH of ρθ(x),with ρθ

introduced in (A2.3) and x ∈ H, is given by

∥ρθ(x)∥2H =

∫ h

0

(ρθ (x) (t))
2 d
(
λ+ δ(h)

)
(t) =

∫ h

0

(ρθ (x) (t))
2 dt+ (ρθ (x) (h))

2 ,

for each h > 0. The following lemma provides, for each k ≥ 1, the exact value of the norm of ρkθ , in the
space of bounded linear operators on H. As a direct consequence, the existence of an integer k0 such that
∥ρkθ∥L(H) < 1, for k ≥ k0, is also derived for θ > 0.

LemmaA2.2.1 Let us consider θ > 0 andX = {Xn, n ∈ Z} satisfying equations (A2.1)–(A2.3). For each
k ≥ 1, the uniform norm of ρkθ is given by

∥ρkθ∥L(H) =

√
e−2θ(k−1)h

(
1 + e−2θh (2θ − 1)

2θ

)
= e−θ(k−1)h∥ρθ∥L(H). (A2.5)
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Furthermore, for k ≥ k0 =
[
1
θ
+ 1
]+
,

∥ρkθ∥L(H) < 1, (A2.6)

where [t]+ denotes the closest upper integer of t, for every t ∈ R+.

The proof of this lemma can be found in the Supplementary Material A2.5 provided.

Remark A2.2.1 From equation (A2.6), applying [Bosq, 2000,Theorem 3.1], Lemma A2.2.1 implies thatX con-
structed in (A2.1) from an O.U. process, defines the unique stationary solution to equation (A2.2) in the space
H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
, admitting the MAH(∞) representation

Xn =
+∞∑
k=0

ρkθ (εn−k) , n ∈ Z, ρθ ∈ L (H) .

Remark A2.2.2 Note that, for all x ∈ H, and k ≥ 2, ∥ρkθ∥L(H) ≤ ∥ρθ∥kL(H).

A2.2.2 Functional parameter estimation and consistency

We now prove the strong consistency of the estimator ρθ̂n of operator ρθ in L(H), with, as before,
H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
, and θ̂n denoting the MLE of θ, based on the observation of an O.U.

process on the interval [0, T ],withT = nh.Note that, from equation (A2.3), for allx ∈ H, and for a given
sample size n,

ρθ̂n(x) = e−θ̂ntx (h) ,

where the MLE of θ is given, for T = nh, by

θ̂T =
1 +

ξ20
T
− ξ2T

T

2
T

∫ T

0

ξ2t dt

, T > 0, (A2.7)

with {ξt, t ∈ [0, T ]} being the observed values of the O.U. process over the interval [0, T ]. Thus, ρθ̂n is
introduced in an abstract way, since it can only be explicitly computed, for each particular function x ∈ H
considered. However, the norm ∥ρθ − ρθ̂n∥L(H) is explicitly computed in equation (A2.8) below.

The following results will be applied in the proof of Proposition A2.2.1.

LemmaA2.2.2 If t ∈ [0,+∞), it holds that

|e−ut − e−vt| ≤ |u− v|t, u, v ≥ 0.
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The proof of this lemma is given in the Supplementary Material A2.5.

TheoremA2.2.1 (See also [Kleptsyna and Breton, 2002, Proposition 2.2] and [Kutoyants, 2004, p. 63 and p.
117]). TheMLE of θ defined in equation (A2.7) is strongly consistent; i.e.,

θ̂T −→ θ a.s., T → ∞.

The proof follows from the Ibragimov–Khasminskii’s Theorem.

Proposition A2.2.1 LetH be the spaceL2
(
[0, h] , β[0,h], λ+ δ(h)

)
.Then, the estimator ρθ̂n of operator ρθ,

based on the MLE θ̂n of θ, is strongly consistent in the norm ofL (H); i.e.,

∥ρθ − ρθ̂n∥L(H) −→ 0 a.s., n→ ∞.

Proof. The following straightforward almost surely identities are obtained:

∥ρθ − ρθ̂n∥L(H) = sup
x∈H

{
∥
(
ρθ − ρθ̂n

)
(x) ∥H

∥x∥H

}

= sup
x∈H


√√√√√√√
∫ h

0

((
ρθ − ρθ̂n

)
(x) (t)

)2
d
(
λ+ δ(h)

)
(t)∫ h

0

(x (t))2 d
(
λ+ δ(h)

)
(t)


= sup

x∈H


√√√√√√√(x (h))2

∫ h

0

(
e−θt − e−θ̂nt

)2
dt+

(
e−θh − e−θ̂nh

)2
∫ h

0

(x (t))2 dt+ (x (h))2



=

√∫ h

0

(
e−θt − e−θ̂nt

)2
dt+

(
e−θh − e−θ̂nh

)2
, (A2.8)

where the last identity is obtained in a similar way to equation (A2.5) in Lemma A2.2.1 (see Supplementary
Material A2.5).

From Lemma A2.2.2 and equation (A2.8), for n sufficiently large, we have

∥ρθ − ρθ̂n∥L(H) ≤

√∫ h

0

t2|θ − θ̂n|2dt+ h2|θ − θ̂n|2 = |θ − θ̂n|

√∫ h

0

t2dt+ h2

= |θ − θ̂n|h
√
h

3
+ 1 a.s. (A2.9)
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The strong–consistency of ρθ̂n in L (H) directly follows from Theorem A2.2.1 and equation (A2.9).
�

Remark A2.2.3 From [Kleptsyna and Breton, 2002, Proposition 2.3] (see alsoTheorem A2.2.2 below), theMLE
θ̂T of θ satisfies

E

{(
θ − θ̂T

)2}
= O

(
2θ

T

)
, T → ∞. (A2.10)

In addition, from equation (A2.9), considering T = nh, h > 0,

E
{
∥ρθ − ρθ̂n∥

2
L(H)

}
≤ E

{
|θ − θ̂n|2

}
h2
(
h

3
+ 1

)
. (A2.11)

Equations (A2.10)–(A2.11) lead to

E
{
∥ρθ − ρθ̂n∥

2
L(H)

}
≤ G(θ, θ̂n, h),

with
G(θ, θ̂n, h) = O

(
2θ

n

)
, n→ ∞.

Therefore, the functional parameter estimator ρθ̂n is
√
n–consistent.

A2.2.3 Consistency of the plug–in ARH(1) predictor

Let us consider the plug–in ARH(1) predictor X̂n, constructed from the MLE ρθ̂n of ρθ in Proposition
A2.2.1, given by

X̂n (t) = ρθ̂n (Xn−1) (t) = e−θ̂ntXn−1 (h) , 0 ≤ t ≤ h, n ∈ Z. (A2.12)

Corollary A2.2.1 below provides the consistency of X̂n, given in equation (A2.12), from Proposition
A2.2.1 by applying the following lemma and theorem.

LemmaA2.2.3 Let {Zn, n ∈ Z} be a sequence of random variables such that

Zn ∼ N
(
0,

1

2θ

)
, θ > 0,

and let {Yn, n ∈ Z} be another sequence of random variables such that√
ln (n)Yn −→p 0, n→ ∞.
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Then,
Yn|Zn| −→p 0, n→ ∞,

where, as usual,−→p indicates convergence in probability.

The proof of this lemma can be found in the Supplementary Material A2.5.

TheoremA2.2.2 Let θ̂T be the MLE of θ defined in equation (A2.7), with θ > 0.Hence,

E

{(
θ − θ̂T

)2}
= O

(
2θ

T

)
, T → ∞. (A2.13)

In particular,

lim
T→∞

E

{(
θ − θ̂T

)2}
= 0.

The proof of this result is given in [Kleptsyna and Breton, 2002, Proposition 2.3].

Corollary A2.2.1 Let H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
be the Hilbert space introduced above. Then, the

plug–in ARH(1) predictor (A2.12) of an O.U. process is consistent inH; i.e.,∥∥(ρθ − ρθ̂n
)
(Xn−1)

∥∥
H
−→p 0.

Proof. By definition,

∥∥(ρθ − ρθ̂n
)
(Xn−1)

∥∥
H
= |Xn−1 (h)|

√∫ h

0

(
e−θt − e−θ̂nt

)2
dt+

(
e−θh − e−θ̂nh

)2
. (A2.14)

From equations (A2.8)–(A2.9) and (A2.14), we then obtain, for n sufficiently large,

∥∥(ρθ − ρθ̂n
)
(Xn−1)

∥∥
H
≤ |Xn−1 (h)|

∣∣∣θ − θ̂n

∣∣∣h√h

3
+ 1 a.s. (A2.15)

Let us set

{Yn, n ∈ Z} =

{
|θ − θ̂n|h

√
h

3
+ 1, n ∈ Z

}
, {Zn, n ∈ Z} = {Xn−1 (h) , n ∈ Z} ,

withZn ∼ N
(
0, 1

2θ

)
, for every n ∈ Z. From Theorem A2.2.1,

Yn −→ 0 a.s., n→ ∞.
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Hence, to apply Lemma A2.2.3, we need to prove that√
ln (n)Yn −→p 0, n→ ∞.

From the Chebyshev’s inequality and Theorem A2.2.2, we get, for all ε > 0,

lim
n→0

P

(
|θ − θ̂n|

√
ln (n)h

√
h

3
+ 1 ≥ ε

)
≤
h2
(
h
3
+ 1
)
ln (n) E

{∣∣∣θ − θ̂n

∣∣∣2}
ε2

= 0.

Therefore, from Lemma A2.2.3, we obtain the convergence in probability of
∥∥(ρθ − ρθ̂n

)
(Xn−1)

∥∥
H

to
zero.

�

A2.2.4 Prediction of O.U. processes inB = C ([0, h])

As before, letB be now the Banach space of continuous functions, whose support is the interval [0, h],
with the supremum norm, denoted as C ([0, h]) . The following lemma states that ∥ρkθ∥L(B) ≤ 1, for
θ > 0, and for every k ≥ 1, with L (B) being the space of bounded linear operators on the Banach space
B = C ([0, h]) , and ρθ being introduced in equation (A2.3). Consequently, from [Bosq, 2000, Theorem
6.1], X = {Xn, n ∈ Z} , constructed in (A2.1) from the O.U. process, defines the unique stationary so-
lution to equation (A2.2), in the Banach spaceB = C ([0, h]) , admitting a MAB(∞) representation.

LemmaA2.2.4 Let ρθ introduced in (A2.3), defined on B = C ([0, h]) .Then, for k ≥ 1, ∥ρkθ∥L(B) ≤ 1,
with θ > 0.

Proof.
From

ρkθ(x)(t) = e−θte−θ(k−1)hx(h),

for each k ≥ 1 and θ > 0,we have

∥∥ρkθ∥∥L(B)
= sup

x∈B

{
∥ρkθ (x) ∥B

∥x∥B

}
= sup

x∈B


sup
0≤t≤h

{∣∣e−θte−θ(k−1)hx(h)
∣∣}

sup
0≤t≤h

|x(t)|


= sup

x∈B


|x(h)| e−θ(k−1)h sup

0≤t≤h
e−θt

sup
0≤t≤h

|x(t)|

 ≤ sup
x∈B


|x(h)| sup

0≤t≤h
e−θt

|x(h)|


= sup

0≤t≤h
e−θt = 1. (A2.16)

�
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We now check the strong consistency of the MLE ρθ̂n of ρθ in L(B). From equation (A2.16),

∥ρθ − ρθ̂n∥L(B) ≤ sup
0≤t≤h

{∣∣∣e−θt − e−θ̂nt
∣∣∣} a.s.

From Lemma A2.2.2, for n sufficiently large, we then have

∥ρθ − ρθ̂n∥L(B) ≤ h
∣∣∣θ − θ̂n

∣∣∣ a.s. (A2.17)

Theorem A2.2.1 then leads to the desired result on strong consistency of the estimator ρθ̂n of ρθ in L(B).
Furthermore, from Theorem A2.2.2 , in a similar way to Remark A2.2.3, the

√
n–consistency ofρθ̂n inL (B)

also follows from equations (A2.13) and (A2.17).
Similarly to Corollary A2.2.1, in the following result, the consistency, in the Banach space

B = C([0, h]), of the plug–in predictor (A2.12) is obtained.

Corollary A2.2.2 The ARB(1) plug–in predictor (A2.12) of a zero–mean O.U. process is consistent in
B = C([0, h]); i.e., as n→ ∞, ∥∥(ρθ − ρθ̂n

)
(Xn−1)

∥∥
B
−→p 0.

Proof. From Lemma A2.2.2, for n sufficiently large, and for each h > 0,

∥
(
ρθ − ρθ̂n

)
(Xn−1) ∥B = sup

0≤t≤h

{∣∣∣e−θt − e−θ̂nt
∣∣∣ |Xn−1 (h)|

}
≤ h|θ − θ̂n||Xn−1 (h) | a.s.

(A2.18)
As derived in the proof of Corollary A2.2.1, from Theorem A2.2.2, the random sequence

{Yn, n ∈ Z} =
{
h|θ − θ̂n|, n ∈ Z

}
is such that

√
ln (n)Yn ≤

√
h

3
+ 1
√

ln (n)Yn −→p 0, n→ ∞.

Moreover, {Zn, n ∈ Z} = {Xn−1 (h) , n ∈ Z} is such thatZn ∼ N
(
0, 1

2θ

)
. Lemma A2.2.3 then leads,

as n→ ∞, to the desired convergence result from equation (A2.18):

∥
(
ρθ − ρθ̂n

)
(Xn−1) ∥B ≤ Yn|Zn| −→p 0.

�

A2.3 Simulations

In this section, a simulation study is undertaken to illustrate the asymptotic results presented in this
paper about the MLE θ̂n of θ, and the consistency of the ML functional parameter estimators of the auto-
correlation operator, and the associated plug–in predictors, in the ARH(1) and ARB(1) frameworks.
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A2.3.1 Estimation of the scale parameter θ

On the simulation of the sample–paths of an O.U. process, an extension of the Euler’s method, the so–
called Euler–Murayama’s method (see Kloeden and Platen [1992]) is applied, from the Langevin stochastic
differential equation satisfied by the O.U. process {ξt, t ∈ [0, T ]}

dξt = −θξt + dWt, θ > 0, t ∈ [0, T ] , ξ0 = x0. (A2.19)

Thus, let 0 = t0 < t1 < · · · < tn = T be a partition of the real interval [0, T ] .Then, (A2.19) can be
discretized as

ξ̂i+1 = ξ̂i − θξ̂i +∆Wi, ξ̂0 = ξ0 = 0, (A2.20)

where {∆Wi, i = 0, . . . , n− 1} are i.i.d. Wiener increments; i.e.,

∆Wi ∼ N (0,∆t) =
√
∆tN (0, 1) , i = 0, . . . , n− 1.

In the following, we take ∆t = 0.02 as discretization step size, considering N = 1000 simulations of the
O.U. process. In particular, Figure A2.3.1 shows some realizations of the discrete version of the solution to
(A2.19) generated from (A2.20).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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1

FigureA2.3.1: Sample paths of an O.U. process {ξt, 0 ≤ t ≤ T} generated with T = 5, ∆t = 0.02, θ = 5

and ξ̂0 = 0.

Let us first illustrate the asymptotic normal distribution of θ̂T ; i.e., for T sufficiently large, we can con-
sider θ̂T ∼ N

(
θ, 2θ

T

)
(see Theorem A2.5.1 in the Supplementary Material A2.5). From equation (A2.7),
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we take

θ̂T =

−
∫ T

0

ξtdξt∫ T

0

ξ2t dt

,

(see also Supplementary material A2.5), to compute the following approximation of the MLE θ̂T of θ, for
each one of theN = 1000 simulations performed, and for each one of the six values of parameter θ consid-
ered:

θ̂T ≃
−

n−1∑
i=0

ξ̂ti,s(θ)
(
ξ̂ti+1,s(θ)− ξ̂ti,s(θ)

)
n−1∑
i=0

ξ̂2ti,s(θ)∆t

, t0 = 0, tn = T, ∆t = 0.02, s = 1, . . . , N, (A2.21)

where ξ̂ti,s(θ) represents the s–th discrete generation of the O.U. process, evaluated at time ti,with covari-
ance scale parameter θ, for

θ = [0.1, 0.4, 0.7, 1, 2, 5] .

Table A2.3.1 displays the empirical probabilities of the error θ̂T−θ to be within the band±3
√

2θ
T
, fromN =

1000 discrete simulations of the O.U. process, considering different sample sizes
{Tl = 12000 + 1000(l − 1), l = 1, . . . , 7}. Figure A2.3.2 displays the casesθ = 0.1 (at the top) andθ =
5 (at the bottom). It can be observed that, for each one of the sample sizes considered,{Tl = 12000 + 1000(l − 1), l = 1, . . . , 7},

approximately a 99% of the realizations of θ̂T−θ lie within the band±3
√

2θ
T
,which supports the asymptotic

Gaussian distribution.

Table A2.3.1: Empirical probabilities of the error of the MLE of θ to lie within the band ±3σ = ±3
√

2θ
T ,

for different sample sizes T, and values of parameter θ.

Parameter θ
T 0.1 0.4 0.7 1 2 5

12000 0.998 1 0.998 0.998 1 0.998

13000 0.997 0.998 0.998 1 0.995 1

14000 0.998 0.997 1 0.997 1 0.998

15000 0.998 0.997 0.998 0.998 1 0.998

16000 0.997 0.995 0.997 0.998 1 1

17000 0.993 0.998 1 0.997 0.995 1

18000 0.997 0.997 0.995 1 1 0.998
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FigureA2.3.2: The values of θ̂T −θ, based on N = 1000 simulations of the O.U. process over the interval
[0, T ], for {Tl = 12000 + (l − 1)1000, l = 1, . . . , 7} , are represented against the confidence bands given
by +3σ = 3

√
2θ
T (upper red dotted line) and −3σ = −3

√
2θ
T (lower green dotted line), for values θ = 0.1

(at the top) and θ = 5 (at the bottom).

Regarding asymptotic efficiency stated in Theorem A2.2.2, from N = 1000 simulations of the O.U.
process over the interval [0, T ], for {Tl = 50 + 250(l − 1), l = 1, . . . , 25} , the corresponding empirical
mean square errors

EMSE(N, T, θ) =
1

N

N∑
s=1

(
θ − θ̂T (ωs)

)2
, N = 1000, θ = [0.1, 0.4, 0.7, 1] ,

are displayed in Figure A2.3.3. Here, θ̂T (ωs), withωs ∈ Ω, s = 1, . . . , N, represent the respective approx-
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imated values (A2.21) of the MLE of θ, computed from ξti,s, s = 1, . . . , N, ti ∈ [0, T ], i = 1, . . . , n. It
can be observed, from the results displayed in Figure A2.3.3, that Theorem A2.2.2 holds for T sufficiently
large.
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FigureA2.3.3: EMSE(N,T, θ) based on N = 1000 generations of O.U. process, for different sample sizes
and values θ = 0.1 (blue star line), θ = 0.4 (black circles line), θ = 0.7 (green plus line), θ = 1 (magenta
cross line) and θ = 2 (red triangle line).

A2.3.2 Consistency of ρθ̂T = ρθ̂n in L(H) and L(B)

The strong–consistency ofρθ̂n inL(H) is derived in Proposition A2.2.1 from the following almost surely
upper bound

∥ρθ − ρθ̂n∥L(H) ≤ |θ − θ̂n|h
√
h

3
+ 1 a.s. (A2.22)

Here, from N = 1000 simulations of the O.U. process on the interval [0, T ], with sample sizes
T = nh = n = {200000 + (l − 1)200000, l = 1, . . . , 5} , the corresponding values of θ̂T−θ = θ̂n−θ
are computed, considering the cases θ = [0.4, 0.7, 1] . Table A2.3.2 shows the empirical probability of

θ̂T − θ to lie within the band ±3
√

2θ
T
, for each one of sample sizes and cases θ = [0.4, 0.7, 1] regarded.

It can be observed that for the sample sizes studied, in the case of θ = 1, the empirical probabilities are
equal to one. Thus, the almost surely convergence to zero of the upper bound (A2.22) holds, with an ap-
proximated convergence rate of

√
T =

√
n. Note that, for the other two cases, θ = 0.4 and θ = 0.7, the

empirical probabilities are also very close to one (see also Table A2.3.1 for smaller sample sizes, where we
can also observe the empirical probabilities very close to one for the same band). In particular, Figure A2.3.4
displays the cases θ = 0.4 (at the top) and θ = 1 (at the bottom).
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Table A2.3.2: Empirical probability of θ̂T − θ to be within the band ±3σ = ±3
√

2θ
T , from N = 1000 sim-

ulations of an O.U. process over the interval [0, T ], with {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} ,
considering the cases θ = [0.4, 0.7, 1].

Parameter θ
T 0.4 0.7 1

200000 1 1 1

400000 1 1 1

600000 0.999 1 1

800000 0.999 0.999 1

1000000 0.998 1 1
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Figure A2.3.4: The values of θ̂T − θ are represented, corresponding to N = 1000 simulations of an O.U.
process over the interval [0, T ], with {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , considering the cases
θ = 0.4 (at the top), and θ = 1 (at the bottom). The upper red dotted line is +3

√
2θ
T and the lower

green dotted line is −3
√

2θ
T .

It can be observed from Table A2.3.2 that a better performance is obtained for the largest values of θ,
which corresponds to the weakest dependent case. Furthermore, from the upper bound in (A2.17), the
strong consistency of ρθ̂n in L(B), with, as before, B = C([0, h]), is also illustrated from the results dis-
played in Table A2.3.2 and Figure A2.3.4.

A2.3.3 Consistency of the ARH(1) and ARB(1) plug–in predictors for the O.U. process

Let us now consider the derived upper bounds in (A2.15) and (A2.18) in Corollaries A2.2.1–A2.2.2,
for the ARH(1) and ARB(1) predictors, respectively. From the generation of N = 1000 discrete realiza-
tions of an O.U. process over the interval [0, T ], for {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , the
upper bounds (A2.15) and (A2.18) are evaluated, for the cases θ = [0.4, 0.7, 1] . The following empirical
probabilities for ϵ = 0.008, are reflected in Table A2.3.3

P̂H(N, T, θ) = 1− P̂

(
|Xn−1 (h) ||θ − θ̂n|h

√
h

3
+ 1 > ϵ

)
, (A2.23)

P̂B(N, T, θ) = 1− P̂
(
|Xn−1 (h) ||θ − θ̂n|h > ϵ

)
, (A2.24)

with N = 1000, {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} and θ = [0.4, 0.7, 1], for the Hilbert–
valued and Banach–valued (see (A2.15) and (A2.18)) frameworks (see also Figure A2.3.5). It can be ob-
served that the empirical probabilities are equal to one in both frameworks for the largest sample sizes, in
any of the cases considered.
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Table A2.3.3: Empirical probabilities (A2.23)–(A2.24), based on N = 1000 simulations of the O.U.
process over the interval [0, T ], for {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , considering the cases
θ = [0.4, 0.7, 1] , and ϵ = 0.008.

Parameter θ
Hilbert-valued case Banach-valued case

T 0.4 0.7 1 0.4 0.7 1

200000 0.980 0.980 0.980 0.987 0.991 0.987

400000 0.995 0.995 0.995 0.997 0.998 0.9977

600000 0.999 0.998 0.999 0.999 0.999 1

800000 1 0.999 0.999 1 1 1

1000000 1 1 1 1 1 1
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FigureA2.3.5: The values of |Xn−1 (h) ||θ−θ̂n|h
√

h
3 + 1 (first and second figure) and |Xn−1 (h) ||θ−θ̂n|h

(third and fourth figure) are represented, based on N = 1000 generations of O.U. process over the interval
[0, T ], for {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , against ϵ = 0.008 (red dotted line), considering
θ = 0.4 (first and third figure) and θ = 1 (second and fourth figure).

The strong–consistency of the MLE of θ and of the autocorrelation operator of the O.U. process, in Ba-
nach and Hilbert spaces, has been first illustrated. The almost surely rate of convergence to zero is shown
as well. The numerical results on the consistency of the associated ARH(1) and ARB(1) plug–in predic-

151



tors then follow, from the computation of the corresponding empirical probabilities for the derived upper
bounds. Note that the numerical results displayed in Appendix A2.3 are obtained under generation of sam-
ple sizes ranging from 12000 up to a million of time instants, considering 1000 repetitions for each one
of such sample sizes. In all these simulations performed, the discretization step size considered has been
∆t = 0.02.

A2.4 Final comments

The problem of functional prediction of the O.U. process could be of interest in several applied fields.
For example, in finance, in the context of the Vasicek’s model (see Vasicek [1977]) the results derived allow
to predict the curve representing the interest rate over a temporal interval, in a consistent way. Note that, in
this context, the MLE computed for parameter θ provides a consistent approximation of the speed reversion,
which definitely determines the proposed functional predictor of the interest rate.

Summarizing, this paper addresses the problem of functional prediction of the O.U. process from ARH(1)
and ARB(1) perspectives. Specifically, considering the O.U. process as an ARH(1) and an ARB(1) process,
new results on strong consistency (almost surely convergence to the true parameter value), in the spaces
L(H) and L(B) of the MLE of its autocorrelation operator are derived. Consistency results (convergence
in probability to the true value) of the associated plug–in predictors are obtained as well. The numerical
results shown, in addition, the normality and the asymptotic efficiency of the MLE of the scale parameter θ
of the covariance function of the O.U. process.

A2.5 SupplementaryMaterial

The definition and properties of an O.U. process are given here, as well as the proof of Lemma A2.2.1.

A2.5.1 Ornstein–Uhlenbeck process

Let ξ (ω) = {ξt (ω) , t ∈ R} , ω ∈ Ω, be a real–valued sample–path continuous stochastic process
defined on the basic probability space (Ω,A,P) , with index set the real line R. As demonstrated in Doob
[1942], process ξ is an O.U. process if it provides the Gaussian solution to the following stochastic linear
Langevin differential equation:

dξt = θ (µ− ξt) dt+ σdWt, θ, σ > 0, t ∈ R, (A2.25)

whereW = {Wt, t ∈ R} is a standard bilateral Wiener process; i.e.,

Wt = W
(1)
t 1R+ (t) +W

(2)
−t 1R− (t) ,

withW (1)
t andW (2)

−t being independent standard Wiener processes, and1R+ and1R− respectively denoting
the indicator functions over the positive and negative real line. Applying, in equation (A2.25), the method
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of separation of variables, considering f (ξt, t) = ξte
θt,we obtain

ξt = µ+

∫ t

−∞
σe−θ(t−s)dWs, θ, σ > 0, t ∈ R, (A2.26)

where the integral is understood in the Itô sense (see Ash and Gardner [1975]; Sobczyk [1991] for more
details). Particularizing to ξ = {ξt, t ∈ R+}, the O.U. process is transformed into

ξt = ξ0e
−θt + µ

(
1− e−θt

)
+

∫ t

0

σe−θ(t−s)dWs, θ, σ > 0, t ∈ R+. (A2.27)

It is well–known that the solution ξ = {ξt, t ∈ R} to the stochastic differential equation

dξt = µ (ξt, t) dt+
√
D (ξt, t)dWt, t ∈ R,

has marginal probability density function f (x, t) , satisfying the following Fokker–Planck’s scalar equation
(see, for example, Kadanoff [2000]):

∂

∂t
f (x, t) =

−∂
∂x

[µ (x, t) f (x, t)] +
1

2

∂2

∂x2
[D (x, t) f (x, t)] , t ∈ R.

In the case of O.U. process, the stationary solution ( ∂
∂t
f (x, t) = 0), under f (x, x0) = δ (x− x0),

adopts the form

f (x, t) =

√
θ

πσ2
e

−θ(x−µ)2

σ2 , θ, σ > 0, t ∈ R,

which corresponds to the probability density function of a Gaussian distribution with mean µ and variance
σ2

2θ
, i.e., which corresponds to the probability density function of a random variableX such that

X ∼ N
(
µ,
σ2

2θ

)
.

From (A2.26), the mean and covariance functions of O.U. process (see, for instance, Doob [1942]; Uhlen-
beck and Ornstein [1930]) can be computed as follows:

µξ(t) = E {ξt} = µ+ σE

{∫ t

−∞
e−θ(t−s)dWs

}
= µ, t ∈ R,

Cξ(t, s) = Cov (ξs, ξt) = E {(ξs − µ) (ξt − µ)} = σ2e−θ(t+s)E

{∫ t

−∞
eθudWu

∫ s

−∞
eθvdWv

}
= σ2e−θ(t+s)

∫ ∞

−∞
e2θu1[−∞,t] (u)1[−∞,s] (u) du = σ2e−θ(t+s)

∫ min{s,t}

−∞
e2θudu

=
σ2

2θ
e−θ(t+s)e2θmin{s,t} =

σ2

2θ
e−θ|t−s|, t, s ∈ R, (A2.28)
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whereCov (X,Y )denotes the covariance between random variablesX andY . Additionally, from (A2.27),
we obtain the following identities:

E {ξt} = µe−θt + µ
(
1− e−θt

)
= µ, E {ξt|ξ0 = c} = µ+ e−θt (c− µ) , t ∈ R+,

Cov (ξs, ξt|ξ0 = c) =
σ2

2θ
e−θ|t−s| +

(
c2 − 2cµ+ µ2

)
e−θ(s+t), t, s ∈ R+,

where c is a constant. In the subsequent development, we will consider µ = 0 and σ = 1.

A2.5.2 Maximum likelihood estimation of the covariance scale parameter θ

The MLE of θ in (A2.28) is given by (see Graczyk and Jakubowski [2006]; [Kutoyants, 2004, p. 63];
[Liptser and Shiraev, 2001, p. 265])

θ̂T =

−
∫ T

0

ξtdξt∫ T

0

ξ2t dt

=

θ

∫ T

0

ξ2t dt−
∫ T

0

ξtdWt∫ T

0

ξ2t dt

= θ −

∫ T

0

ξtdWt∫ T

0

ξ2t dt

, θ, T > 0. (A2.29)

Thus, equation (A2.29) becomes

θ̂T =
1 +

ξ20
T
− ξ2T

T

2
T

∫ T

0

ξ2t dt

, T > 0. (A2.30)

We will assume thatT is large enough such that θ̂T > 0 almost surely. It is well–known that the MLE θ̂T
of θ is strongly consistent (see details in [Kleptsyna and Breton, 2002, Proposition 2.2]; [Kutoyants, 2004,
p. 63 and p. 117]).
TheoremA2.5.1 The following limit in distribution sense holds for theMLE θ̂T of θ, given in equation (A2.30):

lim
T→∞

√
T
(
θ̂T − θ

)
= lim

T→∞

−
√
T

∫ T

0

ξtdWt∫ T

0

ξ2t dt

= Z, with Z ∼ N (0, 2θ) .

Results in [Jiang, 2012, Theorem 1.1 and Corollary 1.1] lead to the following almost surely identities
(see also [Bosq, 2000, Theorem 2.10];[Ledoux and Talagrand, 2011, pp. 196–203], in relation to the law of
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the iterated logarithm)

lim sup
T→+∞

θ̂T − θ√
4θ
T
ln (ln (T ))

= 1 a.s.,

− lim inf
T→+∞

θ̂T − θ√
4θ
T
ln (ln (T ))

= 1 a.s.,

|θ − θ̂T | = O

(√
4θ ln (ln (T ))

T

)
a.s.

A2.5.3 Preliminary inequalities and results

In this section we recall some inequalities and well–known convergence results on random variables, as
well as basic deterministic inequalities, that have been applied in the derivation of the main results displayed
above.
LemmaA2.5.1 LetX be a zero–mean normal distributed random variable, i.e.,X ∼ N (0, σ2) ,withσ > 0.
Then,

P (|X| ≥ x) ≤ e−
x2

2σ2 , x ≥ 0.

Proof. LetX ′ be such thatX ′ ∼ N (0, 1) .Then,

P (|X ′| ≥ x) = 2FX′ (−x) =
√

2

π

∫ ∞

x

e−
t2

2 dt, ∀x ≥ 0. (A2.31)

Let us set

g (x) = e−
x2

2 −
√

2

π

∫ ∞

x

e−
t2

2 dt, g (0) = 0, lim
x→∞

g (x) = 0,

g′ (x) = −xe−
x2

2 +

√
2

π
e−

x2

2 = e−
x2

2

(√
2

π
− x

)
.

(A2.32)

Function g is monotone increasing over
(
0,
√

2
π

)
, and g is monotone decreasing over

(√
2
π
,∞
)
.

From equations (A2.31)–(A2.32),

P (|X ′| ≥ x) ≤ e−
x2

2 , x ≥ 0.
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Now, considerX ′ = X
σ
,withX ∼ N (0, σ2) , then,

P (|X| ≥ x) ≤ e−
x2

2σ2 , x ≥ 0.

�

A2.5.3.1 Proof of Lemma 1

Proof.
Let us first consider the case k = 1, from

ρθ (x) (t) = e−θtx (h) , ρθ (Xn−1) (t) = e−θt
∫ nh

−∞
e−θ(nh−s)dWs,

εn (t) =

∫ nh+t

nh

e−θ(nh+t−s)dWs,

and

∥ρθ(x)∥2H =

∫ h

0

(ρθ (x) (t))
2 d
(
λ+ δ(h)

)
(t) =

∫ h

0

(ρθ (x) (t))
2 dt+ (ρθ (x) (h))

2 ,

we have

∥ρθ∥L(H) = sup
x∈H

{
∥ρθ (x) ∥H
∥x∥H

}
= sup

x∈H



√√√√√√√√
(∫ h

0

e−2θtdt+ e−2θh

)
(x (h))2∫ h

0

(x (t))2 dt+ (x (h))2

 . (A2.33)

Furthermore,

∥ρθ∥L(H) = sup
x∈H



√√√√√√√√
(∫ h

0

e−2θtdt+ e−2θh

)
(x (h))2∫ h

0

(x (t))2 dt+ (x (h))2

 ≤

√∫ h

0

e−2θtdt+ e−2θh. (A2.34)

Additionally, the function x0 : [0, h] −→ R, given by

x0(t) = χM(t), h ∈ M ⊂ [0, h],

∫
M
dt = 0, (A2.35)
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with 1M, denoting the indicator function of set M, belongs toH = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, since

x20(h) = 1,

∫ h

0

x20(t)dt = 0 ∥x0∥2H =

∫ h

0

x20(s)ds+ x20(h) = 1.

Thus, by definition of ∥ρθ∥L(H),

∥ρθ(x0)∥H
∥x0∥H

=

√∫ h

0

e−2θtdt+ e−2θh ≤ ∥ρθ∥L(H) (A2.36)

Equations (A2.33)–(A2.36) lead to

∥ρθ∥L(H) =

√∫ h

0

e−2θtdt+ e−2θh =

√
1 + e−2θh (2θ − 1)

2θ
. (A2.37)

We are now going to compute ∥ρkθ∥L(H), for k ≥ 2. Since, for all x ∈ H,

ρkθ(x)(t) = e−θte−θ(k−1)hx(h),

we obtain

∥ρkθ∥L(H) = sup
x∈H



√√√√√√√√
[
e−2θ(k−1)h

∫ h

0

e−2θtdt+ e−2θkh

]
(x(h))2∫ h

0

(x(t))2 dt+ (x(h))2

 .

Considering function x0 defined in equation (A2.35), applying similar arguments to those given in the
computation of ∥ρθ∥L(H),we have

∥ρkθ∥L(H) =

√
e−2θ(k−1)h

1 + e−2θh (2θ − 1)

2θ
= e−θ(k−1)h∥ρθ∥L(H).

Now, from equation (A2.37),

∥ρθ∥L(H) < 1 ⇐⇒ 1− e−2θh < 2θ
(
1− e−2θh

)
⇐⇒ θ >

1

2
.

Furthermore, for θ ∈ (0, 1/2],

∥ρθ∥L(H) =
√
α (θ) <

√
1 + h,

since
√
α (θ) is a monotonically decreasing function on (0, 1/2] , with α (θ) = 1 if θ = 1

2
and
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α (θ) → 1 + h, when θ → 0. Hence, if θ(k − 1) ≥ 1,

∥ρkθ∥L(H) = e−θ(k−1)h
√
α (θ) ≤ e−h

√
α (θ) <

√
1 + h

eh
< 1, h > 0,

which implies that ∥ρk0θ ∥L(H) < 1, when k0 ≥ 1
θ
+ 1.

�

A2.5.3.2 Proof of Lemma 2

Proof. Let us first assume that x ≥ y > 0.
From the Mean Value Theorem applied over ez , there exists 0 < α < 1 such that

ez+h − ez

h
= ez+αh.

Taking z = −xt and z + h = −yt, we get the following inequalities:

|e−xt − e−yt| = |x− y|te−xt+α(x−y)t = |x− y|text(α−1)e−yαt ≤ |x− y|te−yαt ≤ |x− y|t.

Similar inequalities are obtained for the case y ≥ x > 0, by applying the Mean Value Theorem over the
interval [x, y], instead of [y, x].

�

A2.5.3.3 Proof of Lemma 3

Proof. Considering the indicator function 1·, it holds

Yn|Zn| = Yn|Zn|1{|Zn|<an} + Yn|Zn|1{|Zn|≥an} ≤ Ynan + Yn|Zn|1{|Zn|≥an}, (A2.38)

where {an, n ∈ Z} is a sequence of positive numbers such that the event
{
Yn|Zn|1{|Zn|≥an}, n ∈ Z

}
is

equivalent to {|Zn| ≥ an, n ∈ Z}. From (A2.38) and Lemma A2.5.1, if we take an > ε
2
, for all n ∈ Z,

we get, for each ε > 0,

P (Yn|Zn| ≥ ε) ≤ P
(
Ynan ≥ ε

2

)
+ P (|Zn| ≥ an) ≤ P

(
Ynan ≥ ε

2

)
+ e−θa

2
n . (A2.39)

For an = c
√

ln (n) > ε
2

, with 1√
θ
< c < +∞,

∑
n∈Z

P (|Zn| ≥ an) ≤
∑
n∈Z

e−θa
2
n =

∑
n∈Z

1

nθc2
< +∞,

which implies that
lim
n→∞

P (|Zn| ≥ an) = 0

in equation (A2.39).
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On the other hand, since
√

ln (n)Yn −→p 0, for every ε > 0,

0 = lim
n→∞

P
(√

ln (n)Yn ≥ ε

2

)
= lim

n→∞
P
(
Yn
an
c

≥ ε

2

)
.

Thus, Yn|Zn| −→p 0.
�
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ABSTRACT

This paper presents new results on the prediction of linear processes in function spaces. The autoregressiveHilbertian
process framework of order one (ARH(1) framework) is adopted. A componentwise estimator of the autocorrela-
tion operator is derived from themoment–based estimation of its diagonal coefficients with respect to the orthogonal
eigenvectors of the autocovariance operator, which are assumed to be known. Mean–square convergence to the the-
oretical autocorrelation operator is proved in the space of Hilbert–Schmidt operators. Consistency then follows in
that space. Mean absolute convergence, in the underlying Hilbert space, of the ARH(1) plug–in predictor to the
conditional expectation is obtained as well. A simulation study is undertaken to illustrate the large–sample be-
haviour of the formulated componentwise estimator and predictor. Additionally, alternative componentwise (with
known and unknown eigenvectors), regularized, wavelet–based penalized, and nonparametric kernel estimators of
the autocorrelation operator are compared with the one presented here, in terms of prediction.

A3.1 Introduction

In the last few decades, an extensive literature on statistical inference from functional random variables
has emerged. This work was motivated in part by the statistical analysis of high–dimensional data, as well as
data of a continuous (infinite-dimensional) nature; see, e.g., Bosq [2000, 2007]; Dedecker and Merlevède
[2003]; Ferraty and Vieu [2006]; Merlevède [1996b, 1997]; Ramsay and Silverman [2005]; Ruiz-Medina
[2012]. New developments in functional data analysis are described, e.g., in Bongiorno et al. [2014]; Cuevas
[2014]; Horváth and Kokoszka [2012]; Hsing and Eubank [2015], and in a recent Special Issue of this
journal Goia and Vieu [2016].

These references include a nice summary on the statistics theory for functional data, contemplating
covariance operator theory and eigenfunction expansion, perturbation theory, smoothing and regulariza-
tion, probability measures on a Hilbert spaces, functional principal component analysis, functional coun-
terparts of the multivariate canonical correlation analysis, the two sample problem and the change point
problem, functional linear models, functional test for independence, functional time series theory, spatially
distributed curves, software packages and numerical implementation of the statistical procedures discussed,
among other topics.

The special case of functional regression models, in which the predictor is a random function and the re-
sponse is scalar, has been particularly well studied. Various specifications of the functional regression param-
eter arise in fields such as biology, climatology, chemometrics, and economics. To avoid the computational
(high–dimensional) limitations of the nonparametric approach, several parametric and semi–parametric
methods have been proposed; see, e.g., Ferraty et al. [2012] and the references therein. In Ferraty et al.
[2012], a combination of a spline approximation and the one–dimensional Nadaraya–Watson approach was
proposed to avoid high dimensionality issues. Generalizations to the case of more regressors (all functional,
or both functional and real) were also addressed in the nonparametric, semi–parametric, and parametric
frameworks; for an overview, see Aneiros-Pérez and Vieu [2006]; Febrero-Bande and González-Manteiga
[2013]; Ferraty and Vieu [2009].
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In the nonparametric regression framework, the case where the covariates and the response are func-
tional was considered by Ferraty et al. [2012], where a functional version of the Nadaraya–Watson esti-
mator was proposed for the estimation of the regression operator and shown to be point–wise asymptoti-
cally normal. Resampling techniques were used to overcome the difficulties arising in the estimation of the
asymptotic bias and variance. Semi–functional partial linear regression, introduced in Aneiros-Pérez and
Vieu [2008], allows the prediction of a real-valued random variable from a set of real–valued explanatory
variables, and a time–dependent functional explanatory variable. Motivated by genetic and environmental
applications, a semi–parametric maximum likelihood method for the estimation of odds ratio association
parameters was developed by Chen et al. [2012] in a high–dimensional data context.

In the autoregressive Hilbertian time series framework, several estimation and prediction procedures
have been proposed and studied. Mas [1999] established, under suitable conditions, the asymptotic normal
distribution of the formulated estimator of the autocorrelation operator, based on projection into the theo-
retical eigenvectors. In Bosq [2000]; Bosq and Blanke [2007], the problem of prediction of linear processes
in function spaces was addressed. In particular, sufficient conditions for the consistency of the empirical
autocovariance and cross–covariance operators were obtained. The asymptotic normal distribution of the
empirical autocovariance operator was also derived. Moreover, the asymptotic properties of the empirical
eigenvalues and eigenvectors were analysed.

Guillas [2001] established the efficiency of a componentwise estimator of the autocorrelation operator,
based on projection into the empirical eigenvector system of the autocovariance operator. Consistency, in
the space of bounded linear operators, of the formulated estimator of the autocorrelation operator, and of its
associated ARH(1) plug–in predictor was later proved by Mas [2004]. He derived sufficient conditions for
the weak convergence of the ARH(1) plug–in predictor to a Hilbert–valued Gaussian random variable (see
Mas [2007]). Simultaneously, Mas and Menneteau [2003a] obtained high deflection results or large and
moderate deviations for infinite–dimensional autoregressive processes. Furthermore, the law of the iterated
logarithm for the covariance operator estimator was formulated by Menneteau [2005].

The main properties of the class of autoregressive Hilbertian processes with random coefficients were
investigated by Mourid [2004]. Kargin and Onatski [2008] gave interesting extensions of the autoregres-
sive Hilbertian framework, based on the spectral decomposition of the autocorrelation operator, and not
of the autocovariance operator. The first generalization on autoregressive processes of order greater than
one was proposed by Mourid [1993], in order to improve prediction. ARHX(1) models; i.e., autoregres-
sive Hilbertian processes with exogenous variables were studied by Damon and Guillas [2002, 2005]. In
Guillas [2000, 2001] a doubly stochastic formulation of the autoregressive Hilbertian process was investi-
gated. The ARHD model was introduced by Marion and Pumo [2004], taking into account the regularity
of trajectories through the derivatives. The conditional autoregressive Hilbertian process (CARH process)
was considered by Cugliari [2011], developing parallel projection estimation methods to predict such pro-
cesses. In the Banach–valued context, we refer to the papers by Bensmain and Mourid [2001]; Dehling and
Sharipov [2005]; Pumo [1992, 1998], among others.

In this paper, we assume that the autocorrelation operator belongs to the Hilbert–Schmidt class, and
admits a diagonal spectral decomposition in terms of the orthogonal eigenvector system of the autoco-
variance operator. Such is the case, e.g., of an autocorrelation operator defined as a continuous function
of the autocovariance operator. A componentwise estimator of the autocorrelation operator is then con-
structed in terms of the eigenvectors of the autocovariance operator, which are assumed to be known. This
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occurs when the random initial condition is defined as the solution, in the mean–square sense, of a stochas-
tic differential equation driven by white noise. Beyond this case, the sparse representation and whitening
properties of wavelet bases can be exploited to obtain a diagonal representation of the autocovariance and
cross–covariance operators, in terms of a common and known wavelet basis. Unconditional bases, like
wavelet bases, also allow the diagonal spectral series representation of the distributional kernels of Calderón-
Zygmund operators.

Under the assumptions stated in Appendices A3.2–A3.4, we establish the convergence in the L2-sense
of a componentwise estimator of the autocorrelation operator in the space of Hilbert–Schmidt operators
S (H) , i.e., L2

S(H) (Ω,A,P) , is derived. Consistency then follows in S (H). Under the same condi-
tions, consistency in H of the associated ARH(1) plug–in predictor is obtained, from its convergence in
the L1-sense in the Hilbert space H, i.e., in the space L1

H (Ω,A,P). The Gaussian framework is analysed
in Appendix A3.4 and illustrated in Appendix A3.5, where examples show the behaviour of the proposed
componentwise autocorrelation operator estimator, and associated predictor, for large sample sizes. We
also present there a comparative study with alternative ARH(1) prediction techniques, including compo-
nentwise parameter estimation of the autocorrelation operator, from known and unknown eigenvectors, as
well as kernel (nonparametric) functional estimation, and penalized, spline and wavelet, estimation. Final
comments on the application of the proposed approach from real data are provided in Appendix A3.6.

A3.2 Preliminaries

This section contains the preliminary definitions and lemmas that will be used to derive the main results
of this paper. In the following, H denotes a real separable Hilbert space. Recall that, from Bosq [2000], a
zero–mean ARH(1) processX = {Xn, n ∈ Z} satisfies, for all n ∈ Z, the equation

Xn = ρ (Xn−1) + εn, (A3.1)

whereρdenotes the autocorrelation operator of the processX,which belongs to the spaceL(H)of bounded
linear operators, such that ∥ρk∥L(H) < 1, for all integers k ≥ k0 beyond a certain k0 ≥ 1, with ∥ · ∥L(H)

denoting the norm in the space L(H). The Hilbert–valued innovation process ε = {εn, n ∈ Z} is as-
sumed to be a strong–white noise which is uncorrelated with the random initial condition. That is, ε is a
Hilbert–valued zero–mean stationary process, with independent and identically distributed components in
time, with σ2

ε = E {∥εn∥2H} <∞, for all n ∈ Z.We restrict our attention here to the case where ρ is such
that

∥ρ∥L(H) < 1.

The following assumptions are made.

Assumption A1. The autocovariance operator

C = E {Xn ⊗Xn} = E {X0 ⊗X0} , n ∈ Z,

is a positive, self–adjoint and trace operator. As a result, it admits the following diagonal spectral represen-
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tation

C =
∞∑
j=1

Cjϕj ⊗ ϕj,

in terms of an orthonormal system {ϕj, j ≥ 1} of eigenvectors which are known. Here,

C1 ≥ C2 ≥ · · · ≥ Cj ≥ · · · > 0

denote the real positive eigenvalues ofC arranged in decreasing order of magnitude and

∞∑
j=1

Cj <∞.

AssumptionA2. The autocorrelation operator ρ is a self–adjoint and Hilbert–Schmidt operator, admitting
the diagonal spectral decomposition

ρ =
∞∑
j=1

ρjϕj ⊗ ϕj,
∞∑
j=1

ρ2j <∞,

where {ρj, j ≥ 1} is the system of eigenvalues of the autocorrelation operator ρ, with respect to the or-
thonormal system of eigenvectors {ϕj, j ≥ 1} of the autocovariance operatorC .

Note that, under Assumption A2,

∥ρ∥L(H) = sup
j≥1

|ρj| < 1.

Remark A3.2.1 Assumption A2 holds, in particular, when operator ρ is defined as a continuous function of op-
erator C (see [Dautray and Lions, 1990, pp. 119–140] and Remark A3.2.4).

In the following, for any n ∈ Z, let

D = E {Xn ⊗Xn+1} = E {X0 ⊗X1}

be the cross–covariance operator of the ARH(1) processX .

Remark A3.2.2 Under Assumptions A1–A2, it follows from equation (A3.1) that

Cε = CρCρ =
∞∑
j=1

Cj
(
1− ρ2j

)
ϕj ⊗ ϕj =

∞∑
j=1

σ2
jϕj ⊗ ϕj.
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By projecting equation (A3.1) into the orthonormal system {ϕj, j ≥ 1}, we also have, for each j ≥ 1
and all n ∈ Z, the AR(1) equation

Xn,j = ρjXn−1,j + εn,j, n ∈ Z, (A3.2)

where Xn,j = ⟨Xn, ϕj⟩H and εn,j = ⟨εn, ϕj⟩H , for all n ∈ Z. From equation (A3.2), we have, for each
j ≥ 1 and all n ∈ Z,

ρj = ρ(ϕj)(ϕj) =
⟨
ϕj, DC

−1(ϕj)
⟩
H
= ⟨D(ϕj), ϕj⟩H

⟨
C−1(ϕj), ϕj

⟩
H

=
E {Xn,jXn−1,j}
E
{
X2
n−1,j

} =
Dj

Cj
, n ∈ Z, (A3.3)

where

Dj = ⟨D(ϕj), ϕj⟩H = E {Xn,jXn−1,j} , C−1
j = [E

{
X2
n−1,j

}
]−1, Xn,j = ⟨Xn, ϕj⟩H ,

given that, for all j ≥ 1,

D =
∞∑
j=1

Djϕj ⊗ ϕj, Dj = ρjCj, j ≥ 1. (A3.4)

Let us now consider the Banach space L2
H (Ω,A,P) of the equivalence classes of L2

H (Ω,A,P) , the
space of zero–mean second–order Hilbert–valued random variables (H–valued random variables) with fi-
nite seminorm given by

∥Z∥L2
H(Ω,A,P) =

√
E
{
∥Z∥2H

}
, ∀Z ∈ L2

H (Ω,A,P) .

That is, forZ, Y ∈ L2
H (Ω,A,P) , Z and Y belong to the same equivalence class if and only if

E {∥Z − Y ∥H} = 0.

The convergence in the seminorm of L2
S(H) (Ω,A,P) will be considered in Proposition A3.2.1, where

H = S(H) denotes the Hilbert space of Hilbert–Schmidt operators on a Hilbert spaceH .
For each n ∈ Z, let us consider the following biorthogonal representation of the functional value Xn

of the ARH(1) processX = {Xn, n ∈ Z}, and of the functional value εn of its innovation process:

Xn =
∞∑
j=1

√
Cj

⟨Xn, ϕj⟩H√
Cj

ϕj =
∞∑
j=1

√
Cjηj(n)ϕj, (A3.5)

εn =
∞∑
j=1

σj
⟨εn, ϕj⟩H

σj
ϕj =

∞∑
j=1

σj η̃j(n)ϕj, (A3.6)
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where
ηj(n) =

⟨Xn, ϕj⟩H√
Cj

=
Xn,j√
Cj
, η̃j(n) =

⟨εn, ϕj⟩H
σj

=
εn,j
σj

, n ∈ Z, j ≥ 1.

Here, under Assumptions A1–A2, forCε = E {εn ⊗ εn} = E {ε0 ⊗ ε0} , n ∈ Z,

Cε (ϕj) = σ2
jϕj, j ≥ 1,

where, as before, {ϕj, j ≥ 1} denotes the system of eigenvectors of the autocovariance operatorC, and

∞∑
j=1

σ2
j = σ2

ε = E
{
∥εn∥2H

}
,

for all n ∈ Z.
The following lemma provides the convergence, in the seminorm of L2

H(Ω,A,P), of the series expan-
sions (A3.5)–(A3.6).

LemmaA3.2.1 LetX = {Xn, n ∈ Z} be a zero–mean ARH(1) process. Under Assumptions A1–A2, for
any n ∈ Z, the following limit holds

lim
M→∞

E

{∥∥∥Xn − X̂n,M

∥∥∥2
H

}
= 0,

where X̂n,M =
M∑
j=1

√
Cjηj(n)ϕj . Furthermore,

lim
M→∞

∥∥∥E{(Xn − X̂n,M

)
⊗
(
Xn − X̂n,M

)}∥∥∥2
S(H)

= 0.

Similar assertions hold for the biorthogonal series representation

εn =
∞∑
j=1

σj
⟨εn, ϕj⟩H

σj
ϕj =

∞∑
j=1

σj η̃j(n)ϕj.

Proof.
Under Assumption A1, from the trace property ofC, the sequence{

X̂n,M =
M∑
j=1

√
Cjηj(n)ϕj, M ≥ 1

}
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satisfies, forM sufficiently large, andL > 0, arbitrary,

∥X̂n,M+L − X̂n,M∥2L2
H(Ω,A,P ) = E

{
∥X̂n,M+L − X̂n,M∥2H

}
=

M+L∑
j=M+1

M+L∑
k=M+1

√
Cj
√
CkE {ηj(n)ηk(n)} ⟨ϕj, ϕk⟩H

=
M+L∑
j=M+1

Cj → 0, whenM → ∞, (A3.7)

since, under Assumption A1,
∞∑
j=1

Cj <∞. Hence,

{
M∑
j=1

Cj, M ≥ 1

}
is a Cauchy sequence. Thus,

lim
M→∞

M+L∑
j=M+1

Cj = 0,

forL > 0 arbitrary. From equation (A3.7),{
X̂n,M =

M∑
j=1

√
Cjηj(n)ϕj, M ≥ 1

}

is also a Cauchy sequence in L2
H(Ω,A, P ). Thus, the sequence

{
X̂n,M , M ≥ 1

}
has finite limit in

L2
H(Ω,A,P), for all n ∈ Z.

Furthermore,

lim
M→∞

E

{∥∥∥Xn − X̂n,M

∥∥∥2
H

}
= E

{
∥Xn∥2H

}
+ lim

M→∞

M∑
j=1

M∑
h=1

√
Cj
√
ChE {ηj(n)ηh(n)} ⟨ϕj, ϕh⟩H

− 2 lim
M→∞

M∑
j=1

√
CjE {⟨Xn, ηj(n)ϕj⟩H} = σ2

X

− lim
M→∞

M∑
j=1

Cj = 0.

(A3.8)

In the derivation of the identities in (A3.7)–(A3.8), we have applied that, for every j, h ≥ 1,
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C (ϕj) = Cjϕj, σ2
X = E

{
∥Xn∥2H

}
=

∞∑
j=1

Cj < +∞, ⟨ϕj, ϕh⟩H = δj,h,

E {ηj(n)ηh(n)} = δj,h, E
{
⟨Xn, ηj(n)ϕj⟩H

}
=
√
Cj.

(A3.9)

Moreover, from identities in (A3.9),∥∥∥E{(Xn − lim
M→∞

X̂n,M

)
⊗
(
Xn − lim

M→∞
X̂n,M

)}∥∥∥2
S(H)

=

∥∥∥∥∥E {Xn ⊗Xn}+ lim
M→∞

M∑
j=1

M∑
h=1

√
Cj
√
Chϕj ⊗ ϕhE {ηj(n)ηh(n)}

−2 lim
M→∞

M∑
j=1

E
{
Xn ⊗

√
Cjηj(n)ϕj

}∥∥∥∥∥
2

S(H)

=

∥∥∥∥∥E {Xn ⊗Xn}+ lim
M→∞

[
M∑
j=1

Cjϕj ⊗ ϕj − 2
M∑
j=1

Cjϕj ⊗ ϕj

]∥∥∥∥∥
2

S(H)

=

∥∥∥∥∥E {Xn ⊗Xn} − lim
M→∞

M∑
j=1

Cjϕj ⊗ ϕj

∥∥∥∥∥
2

S(H)

= 0. (A3.10)

In a similar way, we can derive the convergence to εn, inL2
H(Ω,A,P), of the series

∞∑
j=1

σj η̃j(n)ϕj, for

every n ∈ Z, since ε is assumed to be strong–white noise, and hence, its covariance operator Cε is in the
trace class. We can also obtain an analogous to equation (A3.10).

�

In equations (A3.5)–(A3.6), for every n ∈ Z,

E {ηj(n)} = 0, E {ηj(n)ηh(n)} = δj,h, j, h ≥ 1, n ∈ Z, (A3.11)
E {η̃j(n)} = 0, E {η̃j(n)η̃h(n)} = δj,h, j, h ≥ 1, n ∈ Z.

Note that, from Assumption A2 for each j ≥ 1, {Xn,j, n ∈ Z} in equation (A3.2) defines a sta-
tionary and invertible AR(1) process. In addition, from equations (A3.5) and (A3.9), for every n ∈ Z,
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and j, p ≥ 1,

Xn =
∞∑
j=1

Xn,jϕj,

E {Xn,jXn,p} =
∞∑
k=0

∞∑
h=0

ρkjρ
h
pE {εn−k,jεn−h,p} = δj,p

∞∑
k=0

ρ2kj σ
2
j = δj,p

σ2
j

1− ρ2j
,

E
{
∥Xn∥2H

}
=

∞∑
j=1

E
{
X2
n,j

}
=

∞∑
j=1

⟨C (ϕj) , ϕj⟩H =
∞∑
j=1

Cj = σ2
X <∞,

(A3.12)

which implies that

Cj =
σ2
j

1− ρ2j
, j ≥ 1.

In particular, we obtain, for each j ≥ 1, and for every n ∈ Z,

E {ηj(n)ηj(n+ 1)} = E

{
Xn,j√
Cj

Xn+1,j√
Cj

}
=

E {Xn,jXn+1,j}
Cj

=

∞∑
k=0

∞∑
h=0

ρk+hj E {εn−k,jεn+1−h,j}

Cj

=

∞∑
k=0

ρ2k+1
j σ2

j

Cj
=
σ2
j

Cj

ρj
1− ρ2j

= ρj. (A3.13)

Remark A3.2.3 From equation (A3.2) and Lemma A3.2.1, keeping in mind that

Cj =
σ2
j

1− ρ2j
, j ≥ 1,

the following invertible and stationary AR(1) process can be defined:

ηj(n) = ρjηj(n− 1) +
√

1− ρ2j η̃j(n), 0 < ρ2j ≤ ρj < 1, (A3.14)

where, for each j ≥ 1, {ηj(n), n ∈ Z} and {η̃j(n), n ∈ Z} are respectively introduced in equations (A3.5)-
(A3.6). In the following, for each j ≥ 1, we assume that

E
{
(η̃j(n))

4} <∞, n ∈ Z,
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to ensure ergodicity for all second–order moments, in the mean–square sense; see, e.g., [Hamilton, 1994, pp. 192–
193].

Furthermore,

D = E {Xn ⊗Xn+1} =
∞∑
j=1

∞∑
p=1

E
{
⟨Xn, ϕj⟩H ⟨Xn+1, ϕp⟩H

}
ϕj ⊗ ϕp

=
∞∑
j=1

∞∑
p=1

√
Cj
√
Cp

E
{
⟨Xn, ϕj⟩H ⟨Xn+1, ϕp⟩H

}√
Cj
√
Cp

ϕj ⊗ ϕp

=
∞∑
j=1

∞∑
p=1

√
Cj
√
CpE {ηj(n)ηp(n+ 1)}ϕj ⊗ ϕp.

Remark A3.2.4 In particular, Assumption A2 holds if the following orthogonality condition is satisfied, for all
n ∈ Z and j, p ≥ 1,

E {ηj(n)ηp(n+ 1)} = δj,p,

where δj,p denotes theKroneckerDelta function. In practice, unconditional bases, e.g., wavelet bases, lead to a sparse
representation for functional data; see, e.g., Nason [2008]; Ogden [1997]; Vidakovic [1998] for statistically-
oriented treatments. Wavelet bases are also designed for sparse representation of kernels defining integral operators,
inL2 spaces with respect to a suitable measure (see Mallat [2009]). The Discrete Wavelet Transform (DWT) ap-
proximately decorrelates or whitens data (see Vidakovic [1998]). In particular, operatorsC andD could admit
an almost diagonal representation with respect to the self-tensorial tensorial product of a suitable wavelet basis.

A3.3 Estimation and prediction results

A componentwise estimator of the autocorrelation operator and of the associated ARH(1) plug–in pre-
dictor are formulated in this section. Their convergence to the corresponding theoretical functional values
are derived in the spaces L2

S(H)(Ω,A,P) and LH(Ω,A,P), respectively. Their consistency in the spaces
S(H) andH then follows.

From equation (A3.3), for each j ≥ 1, and for a given sample sizen, one can consider the usual respec-
tive moment–based estimators D̂n,j and Ĉn,j ofDj andCj, in the AR(1) framework, given by

D̂n,j =
1

n− 1

n−2∑
i=0

Xi,jXi+1,j, Ĉn,j =
1

n

n−1∑
i=0

X2
i,j.
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The following truncated componentwise estimator of ρ is then formulated:

ρ̂kn =
kn∑
j=1

ρ̂n,jϕj ⊗ ϕj, (A3.15)

where, for each j ≥ 1,

ρ̂n,j =
D̂n,j

Ĉn,j
=

1
n−1

n−2∑
i=0

Xi,jXi+1,j

1
n

n−1∑
i=0

X2
i,j

=
n

n− 1

n−2∑
i=0

Xi,jXi+1,j

n−1∑
i=0

X2
i,j

. (A3.16)

Here, the truncation parameter indicates that we have considered the first kn eigenvectors associated
with the first kn eigenvalues, arranged in decreasing order of their modulus magnitude. Furthermore, kn is
such that

lim
n→∞

kn = ∞,
kn
n
< 1, n ≥ 2. (A3.17)

The following additional condition will be assumed on kn for the derivation of the subsequent results:

Assumption A3. The truncation parameter kn in (A3.15) is such that

lim
n→∞

Ckn
√
n = ∞.

Remark A3.3.1 Assumption A3 has also been considered in [Bosq, 2000, p. 217], to ensure weak consistency of
the proposed estimator of ρ, as well as, in [Mas, 1999, Proposition 4], in the derivation of asymptotic normality.

From Remark A3.2.3, for each j ≥ 1, ηj = {ηj(n), n ∈ Z} in equation (A3.14) defines a stationary
and invertible AR(1) process, ergodic in the mean–square sense; see, e.g., Bartlett [1946]. Therefore, in
view of equations (A3.11) and (A3.13), for each j ≥ 1, there exist two positive constants Kj,1 and Kj,2

such that the following identities hold:

lim
n→∞

E


[
1− 1

n

n−1∑
i=0

η2j (i)

]2
1
n

= Kj,1, (A3.18)

lim
n→∞

E


[
ρj − 1

n−1

n−2∑
i=0

ηj(i)ηj(i+ 1)

]2
1
n

= Kj,2. (A3.19)

172



Equations (A3.18)-(A3.19) imply, for n sufficiently large,

Var

{
1

n

n−1∑
i=0

η2j (i)

}
≤ K̃j,1

n
, (A3.20)

Var

{
1

n− 1

n−2∑
i=0

ηj(i)ηj(i+ 1)

}
≤ K̃j,2

n
, (A3.21)

for certain positive constants K̃j,1 and K̃j,2, for each j ≥ 1. Equivalently, for n sufficiently large,

E


(
1− 1

n

n−1∑
i=0

η2j (i)

)2
 ≤ K̃j,1

n
, (A3.22)

E


(
ρj −

1

n− 1

n−1∑
i=0

ηj(i)ηj(i+ 1)

)2
 ≤ K̃j,2

n
, (A3.23)

The following assumption is now considered.

Assumption A4. We assume that

S = sup
j≥1

(
K̃j,1 + K̃j,2

)
<∞.

Remark A3.3.2 From equation (A3.16), applying the Cauchy–Schwarz’s inequality, we obtain, for each j ≥ 1,

|ρ̂n,j| =
n

n− 1

∣∣∣∣∣∣∣∣∣∣

n−2∑
i=0

Xi,jXi+1,j

n−1∑
i=0

X2
i,j

∣∣∣∣∣∣∣∣∣∣
≤ n

n− 1

√√√√n−2∑
i=0

X2
i,j

n−2∑
i=0

X2
i+1,j

n−1∑
i=0

X2
i,j

≤ n

n− 1

√√√√√√√√√
n−2∑
i=0

X2
i+1,j

n−1∑
i=0

X2
i,j

≤ n

n− 1
a.s. (A3.24)
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A3.3.1 Convergence in L2
S(H) (Ω,A,P)

Next, the convergence of ρ̂kn to ρ, in the space L2
S(H) (Ω,A,P) , is derived under the setting of condi-

tions formulated in the previous sections.

Proposition A3.3.1 LetX = {Xn, n ∈ Z} be a zero–mean standardARH(1) process. UnderAssumptions
A1–A4, the following limit holds:

lim
n→∞

∥ρ− ρ̂kn∥
2
L2
S(H)

(Ω,A,P) = 0. (A3.25)

Specifically,

∥ρ− ρ̂kn∥
2
L2
S(H)

(Ω,A,P) ≤ g(n), with g(n) = O
(

1

C2
kn
n

)
, n→ ∞. (A3.26)

Remark A3.3.3 [Bosq, 2000, Corollary 4.3] can be applied to obtain weak convergence results, in terms of weak
expectation, using the empirical eigenvectors . See definition of weak expectation at the beginning of [Bosq, 2000,
Section 1.3, p. 27]).

Proof. For each j ≥ 1, the following almost surely inequality is satisfied:

|ρj − ρ̂n,j| =

∣∣∣∣∣Dj

Cj
− D̂n,j

Ĉn,j

∣∣∣∣∣ =
∣∣∣∣∣DjĈn,j − D̂n,jCj

CjĈn,j

∣∣∣∣∣
=

∣∣∣∣∣DjĈn,j − D̂n,jCj + Ĉn,jD̂n,j − Ĉn,jD̂n,j

CjĈn,j

∣∣∣∣∣
=

∣∣∣∣∣Dj − D̂n,j

Cj
+
Ĉn,j − Cj

Cj

D̂n,j

Ĉn,j

∣∣∣∣∣ ≤ 1

Cj

(
|ρ̂n,j |

∣∣∣Cj − Ĉn,j

∣∣∣+ ∣∣∣Dj − D̂n,j

∣∣∣) .
Thus, under Assumptions A1–A2, from equation (A3.24), for each j ≥ 1,

(ρj − ρ̂n,j)
2 ≤ 1

C2
j

(
|ρ̂n,j |

∣∣∣Cj − Ĉn,j

∣∣∣+ ∣∣∣Dj − D̂n,j

∣∣∣)2
≤ 2

C2
j

(
(ρ̂n,j)

2
(
Cj − Ĉn,j

)2
+
(
Dj − D̂n,j

)2)
≤ 2

C2
j

((
n

n− 1

)2 (
Cj − Ĉn,j

)2
+
(
Dj − D̂n,j

)2)
a.s.,
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which implies, for each j ≥ 1,

E
{
(ρj − ρ̂n,j)

2} ≤ 2

C2
j

((
n

n− 1

)2

E

{(
Cj − Ĉn,j

)2}
+ E

{(
Dj − D̂n,j

)2})
. (A3.27)

Under Assumption A2, from equations (A3.15) and (A3.27),

∥ρ− ρ̂kn∥2L2
S(H)

(Ω,A,P) = E
{
∥ρ− ρ̂kn∥

2
S(H)

}
=

kn∑
j=1

E
{
(ρj − ρ̂n,j)

2}+ ∞∑
j=kn+1

E
{
ρ2j
}

≤
kn∑
j=1

2

C2
j

((
n

n− 1

)2

E

{(
Cj − Ĉn,j

)2}

+E

{(
Dj − D̂n,j

)2})
+

∞∑
j=kn+1

ρ2j

≤ 2

C2
kn

kn∑
j=1

(
n

n− 1

)2(
E

{(
Cj − Ĉn,j

)2}

+E

{(
Dj − D̂n,j

)2})
+

∞∑
j=kn+1

ρ2j

≤
2
(

n
n−1

)2
C2
kn

kn∑
j=1

(
E

{(
Cj − Ĉn,j

)2}
+ E

{(
Dj − D̂n,j

)2})

+
∞∑

j=kn+1

ρ2j . (A3.28)

Furthermore, from (A3.5) and (A3.16), for each j ≥ 1,

Ĉn,j =
1

n

n−1∑
i=0

X2
i,j =

1

n

n−1∑
i=0

Cjη
2
j (i), (A3.29)

D̂n,j =
1

n− 1

n−2∑
i=0

Xi,jXi+1,j =
1

n− 1

n−2∑
i=0

Cjηj(i)ηj(i+ 1), (A3.30)

where, considering equation (A3.4),

Dj = E {Xn,jXn+1,j} = CjE {ηj(n)ηj(n+ 1)} = Cjρj, (A3.31)
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for each j ≥ 1. Equations (A3.28)–(A3.31) then lead to

∥ρ− ρ̂kn∥2L2
S(H)

(Ω,A,P) ≤
2
(

n
n−1

)2
C2
kn

kn∑
j=1

C2
j

E


(
1− 1

n

n−1∑
i=0

η2j (i)

)2


+E


(
ρj −

1

n− 1

n−2∑
i=0

ηj(i+ 1)ηj(i)

)2



+
∞∑

j=kn+1

ρ2j .

For each j ≥ 1, and for n sufficiently large, considering equations (A3.22)–(A3.23), under Assump-
tion A4,

E
{
∥ρ− ρ̂kn∥

2
S(H)

}
≤

2
(

n
n−1

)2
C2
kn

kn∑
j=1

C2
j

(
K̃j,1 + K̃j,2

n

)
+

∞∑
j=kn+1

ρ2j

≤
2S
(

n
n−1

)2
C2
kn
n

kn∑
j=1

C2
j +

∞∑
j=kn+1

ρ2j .

(A3.32)

From the trace property of operatorC,

lim
n→∞

kn∑
j=1

C2
j =

∞∑
j=1

C2
j <∞, (A3.33)

and from the Hilbert–Schmidt property of ρ,

lim
n→∞

∞∑
j=kn+1

ρ2j = 0. (A3.34)

Thus, in view of equations (A3.32)–(A3.34),

∥ρ− ρ̂kn∥
2
L2
S(H)

(Ω,A,P) = E
{
∥ρ− ρ̂kn∥

2
S(H)

}
≤ g(n) = O

(
1

C2
kn
n

)
, n→ ∞,

(A3.35)

where

g(n) =
2S
(

n
n−1

)2
C2
kn
n

kn∑
j=1

C2
j +

∞∑
j=kn+1

ρ2j . (A3.36)
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Under Assumption A3, equations (A3.35)–(A3.36) imply

lim
n→∞

∥ρ− ρ̂kn∥2L2
S(H)

(Ω,A,P) = 0,

as we wanted to prove.
�

Note that consistency of ρ̂kn in the space S (H) directly follows from equation (A3.25) in Proposition
A3.3.1.

Corollary A3.3.1 LetX = {Xn, n ∈ Z} be a zero–mean standard ARH(1) process. Under Assumptions
A1–A4, as long as n→ ∞,

∥ρ− ρ̂kn∥S(H) →
p 0,

where, as usual,→p denotes the convergence in probability.

A3.3.2 Consistency of the ARH(1) plug–in predictor.

Let us consider L (H) the space of bounded linear operators onH,with the norm

∥A∥L(H) = sup
x∈H

∥A (x)∥H
∥x∥H

,

for every A ∈ L (H) . In particular, for each x ∈ H,

∥A (x)∥H ≤ ∥A∥L(H) ∥x∥H . (A3.37)

In the following, we denote by
X̂n = ρ̂kn (Xn−1) (A3.38)

as usual, the ARH(1) plug–in predictor of Xn, as an estimator of the conditional expectation
E {Xn|Xn−1} = ρ (Xn−1). The following proposition provides the consistency of X̂n = ρ̂kn (Xn−1)
inH .

Proposition A3.3.2 LetX = {Xn, n ∈ Z} be a zero–mean standardARH(1) process. UnderAssumptions
A1–A4,

lim
n→∞

E {∥(ρ− ρ̂kn) (Xn−1)∥H} = 0.

Specifically,

E {∥(ρ− ρ̂kn) (Xn−1)∥H} ≤ h (n) , h (n) = O
(

1

Ckn
√
n

)
, n→ ∞.
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In particular,
∥(ρ− ρ̂kn) (Xn−1)∥H →p 0,

where, as usual,→p denotes the convergence in probability.

Proof.
From (A3.37) and Proposition A3.3.1, for n sufficiently large, the following almost surely inequality

holds: ∥∥∥ρ (Xn−1)− X̂n

∥∥∥
H
≤ ∥ρ− ρ̂kn∥L(H) ∥Xn−1∥H ,

where, as given in equation (A3.38), X̂n = ρ̂kn (Xn−1) .Thus,

E
{∥∥∥ρ (Xn−1)− X̂n

∥∥∥
H

}
≤ E

{
∥ρ− ρ̂kn∥L(H) ∥Xn−1∥H

}
. (A3.39)

From the Cauchy-Schwarz’s inequality, keeping in mind that, for a Hilbert–Schmidt operator K, it al-
ways holds that ∥K∥L(H) ≤ ∥K∥S(H),we have from equation (A3.39),

E
{∥∥∥Xn − X̂n

∥∥∥
H

}
≤

√
E
{
∥ρ− ρ̂kn∥

2
L(H)

}√
E
{
∥Xn−1∥2H

}
≤

√
E
{
∥ρ− ρ̂kn∥

2
S(H)

}√
E
{
∥Xn−1∥2H

}
=

√
E
{
∥ρ− ρ̂kn∥

2
S(H)

}
σX , (A3.40)

where, as before, σ2
X = E

{
∥Xn−1∥2H

}
=

∞∑
j=1

Cj <∞, n ∈ Z (see equation (A3.9)).

Since from Proposition A3.3.1 (see equation (A3.26)),

∥ρ− ρ̂kn∥
2
L2
S(H)

(Ω,A,P) ≤ g(n), with g(n) = O
(

1

C2
kn
n

)
, n→ ∞,

from equation (A3.40), we obtain,

E {∥(ρ− ρ̂kn) (Xn−1)∥H} ≤ h (n) ,

where h (n) = σX
√
g (n), with g (n) being given in (A3.36). In particular, under Assumption A3,

lim
n→∞

E {∥(ρ− ρ̂kn) (Xn−1)∥H} = 0,

which implies that

∥(ρ− ρ̂kn) (Xn−1)∥H =
∥∥∥ρ (Xn−1)− X̂n

∥∥∥
H
→p 0, n→ ∞.
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A3.4 TheGaussian case

In this section, we prove that, in the Gaussian ARH(1) context,AssumptionsA1–A2 andA4 also hold.
From equation (A3.11), for n ≥ 1,

E



n−1∑
i=0

η2j (i)

n

 = 1.

Furthermore, for each j ≥ 1 and n ≥ 2, the n × 1 random vector ηTj = (ηj(0), . . . , ηj(n− 1))
follows a Multivariate Normal distribution with null mean vector, and covariance matrix

Σ =


1 ρj 0 . . . . . . 0
ρj 1 ρj 0 . . . 0
0 ρj 1 ρj . . . 0
...

...
...

...
...

...
0 0 0 0 ρj 1


n×n

. (A3.41)

It is well–known (see, for example, Gurland [1956]) that the variance of a quadratic form defined from
a multivariate Gaussian vector y ∼ N(µ,Λ), and a symmetric matrix Q is given by:

Var
{
yTQy

}
= 2Tr (QΛQΛ) + 4µTQΛQµ. (A3.42)

For each j ≥ 1, applying equation (A3.42), with y = ηj, Λ = Σ in (A3.41), and Q = Idn, the
n× n identity matrix, keeping in mind E {ηj(i)ηj(i+ 1)} = ρj , for every i ∈ Z,

Var
{
ηTj Idnηj

}
= Var

{
n−1∑
i=0

η2j (i)

}
= 2Tr (ΣΣ) = 2

(
n+ 2(n− 1)ρ2j

)
.

(A3.43)

Furthermore, from equation (A3.43), for each j ≥ 1,

Var



n−1∑
i=0

η2j (i)

n

 =
2

n2

(
n+ 2(n− 1)ρ2j

)
=

2

n
+ 4

(
1

n
− 1

n2

)
ρ2j . (A3.44)
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We then obtain, from equation (A3.44),

lim
n→∞

Var



n−1∑
i=0

η2j (i)

n

 = lim
n→∞

E



1−

n−1∑
i=0

η2j (i)

n


2


= lim
n→∞

2

n
+ 4

(
1

n
− 1

n2

)
ρ2j = 0. (A3.45)

Equation (A3.45) leads to

lim
n→∞

Var



n−1∑
i=0

η2j (i)

n


1
n

= 2 + 4ρ2j .

Hence, for each j ≥ 1, Kj,1 in equation (A3.18) is given by

Kj,1 = 2 + 4ρ2j ,

and, from equation (A3.44),

Var



n−1∑
i=0

η2j (i)

n

 ≤ 2 + 4

(
1

n
− 1

n2

)
ρ2j ≤ 2 + 4ρ2j ≤ 6.

Thus, for every j ≥ 1, K̃j,1 in equation (A3.20) satisfies

K̃j,1 ≤ 6.

Remark A3.4.1 Note that, from Lemma A3.2.1, for each j ≥ 1 and i ∈ Z,

E
{
η̃4j (i)

}
= 3.

Thus, the assumption considered in Remark A3.2.3 holds, and for each j ≥ 1, the AR(1) process
ηj = {ηj(n), n ∈ Z} is ergodic for all second–order moments, in the mean–square sense; see [Hamilton, 1994,
pp. 192–193].
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Forn ≥ 2, and for each j ≥ 1,we are now going to computeKj,2 in (A3.19). The (n−1)×1 random
vectors

η⋆j = (ηj(0), . . . , ηj(n− 2))T , η⋆⋆j = (ηj(1), . . . , ηj(n− 1))T

are multivariate Normal distributed, with null mean vector, and covariance matrix

Σ̃ =


1 ρj 0 . . . . . . 0
ρj 1 ρj 0 . . . 0
0 ρj 1 ρj . . . 0
...

...
...

...
...

...
0 . . . 0 0 ρj 1


(n−1)×(n−1)

. (A3.46)

From equation (A3.13), for each j ≥ 1,

E

{
n−2∑
i=0

ηj(i)ηj(i+ 1)

}
=

n−2∑
i=0

ρj = (n− 1)ρj = Tr
(
E
{
η⋆j [η

⋆⋆
j ]T
})
, (A3.47)

where
E
{
η⋆j [η

⋆⋆
j ]T
}
= E

{
η⋆j ⊗ η⋆⋆j

}
= ρjIdn−1, (A3.48)

with, as before, Idn−1 denoting the (n− 1)× (n− 1) identity matrix.
However, the variance of

n−2∑
i=0

ηj(i)ηj(i+ 1)

depends greatly on the distribution of η⋆j and η⋆⋆j . In the Gaussian case, keeping in mind that

η⋆j = (ηj(0), . . . , ηj(n− 2))T , η⋆⋆j = (ηj(1), . . . , ηj(n− 1))T

are zero–mean multivariate Normal distributed vectors with covariance matrix Σ̃ given in (A3.46), and hav-

ing cross–covariance matrix in (A3.48), we can compute the variance of
n−2∑
i=0

ηj(i)ηj(i+1), from (A3.47)–

(A3.48), as follows. First,

Var
{
[η⋆j ]

TIdn−1η
⋆⋆
j

}
= E

{
[η⋆j ]

TIdn−1η
⋆⋆
j [η⋆j ]

TIdn−1η
⋆⋆
j

}
−

(
E
{
[η⋆j ]

TIdn−1η
⋆⋆
j

}
]
)2
.

This can be rewritten as

n−2∑
i=0

n−2∑
p=0

E {ηj(i)ηj(i+ 1)ηj(p)ηj(p+ 1)} −
(
E
{
[η⋆j ]

TIdn−1η
⋆⋆
j

})2
,

181



which is equal to

n−2∑
i=0

E {ηj(i)ηj(i+ 1)}
n−2∑
p=0

E {ηj(p)ηj(p+ 1)} +
n−2∑
i=0

n−2∑
p=0

E {ηj(i)ηj(p)}E {ηj(i+ 1)ηj(p+ 1)}

+
n−2∑
i=0

n−2∑
p=0

E {ηj(i)ηj(p+ 1)}E {ηj(i+ 1)ηj(p)}

−
(
E
{
[η⋆j ]

TIdn−1η
⋆⋆
j

})2
.

This then reduces to[
Tr
(
E
{
η⋆j ⊗ η⋆⋆j

})]2
+ Tr

(
Σ̃Σ̃

)
+ Tr

(
E
{
η⋆j ⊗ η⋆⋆j

} [
E
{
η⋆j ⊗ η⋆⋆j

}]T)− [Tr (E{η⋆j ⊗ η⋆⋆j })]2 ,
(A3.49)

which is the same as

Tr
(
Σ̃Σ̃

)
+ Tr

(
E
{
η⋆j ⊗ η⋆⋆j

} [
E
{
η⋆j ⊗ η⋆⋆j

}]T)
= (n− 1) + 2(n− 2)ρ2j + (n− 1)ρ2j ,

where, from (A3.48),

E
{
η⋆j ⊗ η⋆⋆j

} [
E
{
η⋆j ⊗ η⋆⋆j

}]T
=


ρ2j 0 . . . . . . 0
0 ρ2j 0 . . . 0
... . . . . . . ...

...

0 . . .
. . . . . . ρ2j

 = ρ2jIdn−1.

From (A3.49),

Var



n−2∑
i=0

ηj(i)ηj(i+ 1)

n− 1

 =
(n− 1) + 2(n− 2)ρ2j + (n− 1)ρ2j

(n− 1)2
. (A3.50)
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Therefore, for each j ≥ 1,

lim
n→∞

nVar



n−2∑
i=0

ηj(i)ηj(i+ 1)

n− 1

 = 1 + 3ρ2j .

Thus, for each j ≥ 1, Kj,2 in (A3.19) is given byKj,2 = 1 + 3ρ2j . From equation (A3.50),

Var



n−2∑
i=0

ηj(i)ηj(i+ 1)

n− 1

 ≤ 1 + 3ρ2j ≤ 4.

Hence, for every j ≥ 1, K̃j,2 in equation (A3.21) satisfies

K̃j,2 ≤ 4.

Therefore, the constant S in Assumption A4 is such that S ≤ 6 + 4 = 10.

A3.5 Simulation study

A simulation study is undertaken to illustrate the behaviour of the formulated componentwise estimator
of the autocorrelation operator, and of its associated ARH(1) plug–in predictor for large sample sizes. The
results are reported in Appendix A3.5.1. In Appendix A3.5.2, a comparative study is developed, from the im-
plementation of the ARH(1) plug–in prediction techniques proposed in Antoniadis and Sapatinas [2003];
Besse et al. [2000]; Bosq [2000]; Guillas [2001]. In the subsequent sections, we restrict our attention to
the Gaussian case

A3.5.1 Behaviour of ρ̂ and X̂n for large sample sizes

Let (−∆)(a,b) be the Dirichlet negative Laplacian operator on (a, b) given by

(−∆)(a,b) (f) (x) = − d2

dx2
f (x) , x ∈ (a, b) ⊂ R,

f (a) = f(b) = 0.

The eigenvectors{ϕj, j ≥ 1} and eigenvalues
{
λj
(
(−∆)(a,b)

)
, j ≥ 1

}
of (−∆)(a,b) satisfy, for each
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j ≥ 1 and for each x ∈ (a, b),

(−∆)(a,b)ϕj (x) = λj
(
(−∆)(a,b)

)
ϕj (x) , ϕj (a) = ϕj (b) = 0. (A3.51)

For each j ≥ 1 and x ∈ [a, b], the solution to equation (A3.51) is given by (see [Grebenkov and
Nguyen, 2013, p. 6]):

ϕj (x) =

√
2

b− a
sin

(
πjx

b− a

)
, ∀x ∈ [a, b] , λj

(
(−∆)(a,b)

)
=

π2j2

(b− a)2
. (A3.52)

We consider here the operatorC defined as

C =
(
(−∆)(a,b)

)−2(1−γ1) , γ1 ∈ (0, 1/2) .

From [Dautray and Lions, 1990, pp. 119–140], the eigenvectors ofC coincide with the eigenvectors of
(−∆)(a,b), and its eigenvalues {Cj, j ≥ 1} are given by:

Cj =
[
λj
(
(−∆)(a,b)

)]−2(1−γ1) =

[
π2j2

(b− a)2

]−2(1−γ1)

. (A3.53)

Additionally, considering

ρ =

[
(−∆)(a,b)

λ1
(
(−∆)(a,b)

)
− ϵ

]−(1−γ2)

, γ2 ∈ (0, 1/2) ,

for certain positive constant ϵ < λ1
(
(−∆)(a,b)

)
close to zero, ρ is a positive self–adjoint Hilbert–Schmidt

operator, whose eigenvectors coincide with the eigenvectors of (−∆)(a,b) , and whose eigenvalues{ρj, j ≥ 1}
are such that ρj < 1, for every j ≥ 1, and

ρ2j =

[
λj
(
(−∆)(a,b)

)
λ1
(
(−∆)(a,b)

)
− ϵ

]−2(1−γ2)

, ρ2j ∈ (0, 1) , γ2 ∈ (0, 1/2) , (A3.54)

where, as before,
{
λj
(
(−∆)(a,b)

)
, j ≥ 1

}
are given in equation (A3.52).

From (A3.12), the eigenvalues
{
σ2
j , j ≥ 1

}
ofCε are then defined, for each j ≥ 1, as

σ2
j = Cj

(
1− ρ2j

)
= [λj

(
(−∆)(a,b)

)
]−2(1−γ1) −

[
λj
(
(−∆)(a,b)

)]−2(2−γ1−γ2)[
λ1
(
(−∆)(a,b)

)
− ϵ
]−2(1−γ2)

.

Note thatCε is in the trace class, since the trace property ofC, and the fact that ρ2j < 1, for every j ≥ 1,
implies

∞∑
j=1

σ2
j =

∞∑
j=1

Cj
(
1− ρ2j

)
<

∞∑
j=1

Cj <∞.
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For this particular example of operatorC,we have considered truncation parameter kn of the form

kn = n1/α, (A3.55)

for a suitable α > 0, which, in particular, allows verification of (A3.17). From equation (A3.53), one has,
for γ1 ∈ (0, 1/2),

√
nCkn =

√
n
[
λkn
(
−∆(a,b)

)]−2(1−δ1) =
√
n

(
πkn
b− a

)−4(1−δ1)

, δ1 > 1.

From equation (A3.55), Assumption A3 is then satisfied if

1/2− 4 (1− γ1)

α
> 0, i.e., if α > 8 (1− γ1) > 4. (A3.56)

since γ1 ∈ (0, 1/2). Fix γ1 = 0.4 and γ2 = 9/20. Then, from equation (A3.56), α > 48/10. In
particular, the valuesα1 = 5 andα2 = 6 have been tested, in Table A3.5.1 below, forH = L2((a, b)), and
(a, b) = (0, 4),whereL2((a, b)) denotes the space of square integrable functions on (a, b).

The computed empirical truncated functional mean square error EMSEρ̂kn of the estimator ρ̂kn of ρ,
for a sample size n, is given by:

EMSEρ̂kn =
1

N

N∑
w=1

kn∑
j=1

(
ρj − ρ̂wn,j

)2
, (A3.57)

ρ̂wn,j =
D̂w
n,j

Ĉw
n,j

=

1
n−1

n−2∑
i=0

Xw
i,jX

w
i+1,j

1
n

n−1∑
i=0

(
Xw
i,j

)2 , (A3.58)

where N denotes the number of simulations, and for each j = 1, . . . , kn, ρ̂
w
n,j represents the estima-

tor of ρj, based on the w–th generation of the values Xw
0,j, . . . , X

w
n−1,j, with Xw

i,j = ⟨Xw
i , ϕj⟩H , for

w = 1, . . . , 700, and i = 0, . . . , n− 1.
For the plug–in predictor X̂n = ρ̂kn (Xn−1) , we compute the empirical version UB(EMAE)X̂kn

n
of

the derived upper bound (A3.40), which, for each n ∈ Z, is given by

UB(EMAE)X̂kn
n

=

√√√√ 1

N

N∑
w=1

kn∑
j=1

(
ρj − ρ̂wn,j

)2 ̂
E
{∥∥Xw

n−1

∥∥2
H

}
. (A3.59)

FromN = 700 realizations, for each one of the elements of the sequence of sample sizes

{nt, t = 1, . . . , 20} = {15000 + 20000(t− 1), t = 1, . . . , 20} ,
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the EMSEρ̂kn and UB(EMAE)X̂kn
n

values, forα = 5 andα = 6, are displayed in Table A3.5.1, where the
abbreviated notations MSEρ̂kn,1

, for EMSEρ̂kn , and UBX̂
n
kn,1

, for UB(EMAE)X̂kn
n
, are used (see also

Figures A3.5.1–A3.5.2).

Table A3.5.1: EMSEρ̂kn (here, MSEρ̂kn,i
), and UB(EMAE)

X̂kn
n

(here, UB
X̂

n
kn,i

) values, in (A3.57)–
(A3.59), based on N = 700 simulations, for γ1 = 0.4 and γ2 = 9/20, considering the sample sizes
{nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and the corresponding kn,1 and kn,2 values, for α1 = 5 and
α2 = 6.

n kn,1 MSEρ̂kn,1
UB

X̂
n
kn,1

kn,2 MSEρ̂kn,2
UB

X̂
n
kn,2

n1 = 15000 6 3.74 (10)−4 2.87 (10)−2 4 2.45 (10)−4 2.25 (10)−2

n2 = 35000 8 2.15 (10)−4 2.21 (10)−2 5 1.35 (10)−4 1.71 (10)−2

n3 = 55000 8 1.34 (10)−4 1.75 (10)−2 6 1.03 (10)−4 1.51 (10)−2

n4 = 75000 9 1.09 (10)−4 1.57 (10)−2 6 7.55 (10)−5 1.29 (10)−2

n5 = 95000 9 9.48 (10)−5 1.47 (10)−2 6 5.86 (10)−5 1.14 (10)−2

n6 = 115000 10 8.31 (10)−5 1.39 (10)−2 6 5.16 (10)−5 1.07 (10)−2

n7 = 135000 10 6.81 (10)−5 1.25 (10)−2 7 4.86 (10)−5 1.04 (10)−2

n8 = 155000 10 6.37 (10)−5 1.21 (10)−2 7 3.88 (10)−5 9.66 (10)−3

n9 = 175000 11 6.14 (10)−5 1.19 (10)−2 7 3.87 (10)−5 9.65 (10)−3

n10 = 195000 11 5.34 (10)−5 1.11 (10)−2 7 3.42 (10)−5 8.79 (10)−3

n11 = 215000 11 4.67 (10)−5 1.03 (10)−2 7 3.40 (10)−5 8.74 (10)−3

n12 = 235000 11 4.66 (10)−5 1.03 (10)−2 7 2.92 (10)−5 8.12 (10)−3

n13 = 255000 12 4.53 (10)−5 1.02 (10)−2 7 2.77 (10)−5 7.95 (10)−3

n14 = 275000 12 4.24 (10)−5 9.95 (10)−3 8 2.77 (10)−5 7.94 (10)−3

n15 = 295000 12 3.72 (10)−5 9.32 (10)−3 8 2.67 (10)−5 7.76 (10)−3

n16 = 315000 12 3.62 (10)−5 9.21 (10)−3 8 2.55 (10)−5 7.64 (10)−3

n17 = 335000 12 3.39 (10)−5 8.91 (10)−3 8 2.28 (10)−5 7.04 (10)−3

n18 = 355000 12 3.34 (10)−5 8.86 (10)−3 8 2.20 (10)−5 7.04 (10)−3

n19 = 375000 13 3.34 (10)−5 8.86 (10)−3 8 2.04 (10)−5 6.84 (10)−3

n20 = 395000 13 3.12 (10)−5 8.56 (10)−3 8 1.92 (10)−5 6.65 (10)−3
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Figure A3.5.1: EMSEρ̂kn values (blue line), in (A3.57)–(A3.58), based on N = 700 simulations, for
γ1 = 0.4 and γ2 = 9/20, considering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and
the corresponding kn,1 and kn,2 values, for α1 = 5 (left-hand side) and α2 = 6 (right-hand side), against
curves (1/nt)

3/4 (black dot line) and 1/nt (red dot line).
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Figure A3.5.2: UB(EMAE)
X̂kn

n
values (blue line), in (A3.59), based on N = 700 simulations, for γ1 =

0.4 and γ2 = 9/20, considering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and the
corresponding kn,1 and kn,2 values, for α1 = 5 (left-hand side) and α2 = 6 (right-hand side), against
curves (1/nt)

1/2 (red dot line) and (1/nt)
1/3 (black dot line).
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In this paper, a one–parameter model of kn is selected depending on parameter α. In [Guillas, 2001,
Example 2], in the same spirit, for an equivalent spectral class of operators C , a three–parameter model is
established for kn to ensure convergence in quadratic mean in the space L(H) of the componentwise esti-
mator of ρ constructed from the known eigenvectors ofC . The numerical results displayed in Table A3.5.1
and Figures A3.5.1–A3.5.2 illustrate the fact that the proposed componentwise estimator ρ̂kn presents a
speed of convergence to ρ, in quadratic mean inS(H), faster thann−1/3,which corresponds to the optimal
case for the componentwise estimator of ρ proposed in Guillas [2001], in the case of known eigenvectors
of C; see, in particular, [Guillas, 2001, Theorem 1, Remark 2 and Example 2]. For larger values of the pa-
rameters γ1 than 2.4, and α than 6, a faster velocity of convergence of ρ̂kn to ρ, in quadratic mean in the
space S(H), will be obtained. However, larger sample sizes are required for larger values of α, in order to
estimate a given number of coefficients of ρ. A more detailed discussion about comparison of the rates of
convergence of the ARH(1) plug–in predictors proposed in Antoniadis and Sapatinas [2003]; Besse et al.
[2000]; Bosq [2000]; Guillas [2001] can be found in the next section.

A3.5.2 A comparative study

In this section, the performance of our approach is compared with those ones given in Antoniadis and
Sapatinas [2003]; Besse et al. [2000]; Bosq [2000]; Guillas [2001], including the case of unknown eigen-
vectors of C. In the last case, our approach and the approaches presented in Bosq [2000]; Guillas [2001]
are implemented in terms of the empirical eigenvectors.

A3.5.2.1 Theoretical–eigenvector–based componentwise estimators

Let us first compare the performance of our ARH(1) plug–in predictor, defined in (A3.38), and the ones
formulated in Bosq [2000]; Guillas [2001], in terms of the theoretical eigenvectors {ϕj, j ≥ 1} ofC.Note
that, in this first part of our comparative study, we consider the previous generated Gaussian ARH(1) pro-
cess, with autocovariance and autocorrelation operators defined from equations (A3.53) and (A3.54), for
different rates of convergence to zero of parametersCj and ρ2j , j ≥ 1,with both sequences being summable
sequences. Since we restrict our attention to the Gaussian case, conditions A1, B1 and C1, formulated in
[Bosq, 2000, pp. 211–212] are satisfied by the generated ARH(1) process. Similarly, Conditions H1–H3 in
[Guillas, 2001, p. 283] are satisfied as well.

In [Bosq, 2000, Section 8.2] the following estimator of ρ is proposed

ρ̂n(x) =
(
ΠknDnĈ

−1
n Πkn

)
(x) =

kn∑
l=1

ρ̂n,l(x)ϕl, x ∈ H, (A3.60)

ρ̂n,l(x) =
1

n− 1

n−2∑
i=0

kn∑
j=1

1

Ĉn,j
⟨ϕj, x⟩HXi,jXi+1,l, (A3.61)

in the finite dimensional subspace

Hkn = span (ϕ1, . . . , ϕkn)
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ofH,where Πkn is the orthogonal projector overHkn , and, as before,Xi,j = ⟨Xi, ϕj⟩H , for j ≥ 1.
A modified estimator of ρ is studied in [Guillas, 2001, Section 2], given by

ρ̂n,a(x) =
(
ΠknDnĈ

−1
n,aΠ

kn
)
(x) =

kn∑
l=1

ρ̂n,a,l(x)ϕl, x ∈ H, (A3.62)

ρ̂n,a,l(x) =
1

n− 1

n−1∑
i=1

kn∑
j=1

1

max
(
Ĉn,j, an

)⟨ϕj, x⟩HXi,jXi+1,l, (A3.63)

where

Ĉ−1
n,a(x) =

kn∑
j=1

1

max
(
Ĉn,j, an

)⟨ϕj, x⟩Hϕj a.s.
Here, {an, n ∈ N} is such that (see [Guillas, 2001, Theorem 1])

α
Cγ
kn

nε
≤ an ≤ βλkn , α > 0, 0 < β < 1, ε < 1/2, γ ≥ 1.

Tables A3.5.2–A3.5.3 display the truncated, for two different kn rules, empirical values of
E {∥ρ (Xn−1)− ρ̂kn(Xn−1)∥H} , based on N = 700 generations of each one of the functional samples
considered with sizes nt = 15000 + 20000(t− 1), t = 1, . . . , 20,when

Cj = bCj
−δ1 , bC > 0, ρ2j = bρj

−δ2 , bρ > 0.

Specifically, ρ̂kn is computed from equations (A3.15)–(A3.16) (see third column), ρ̂kn = ρ̂n, with ρ̂n be-
ing given in equations (A3.60)–(A3.61) (see fourth column), and ρ̂kn = ρ̂n,a, with ρ̂n,a being defined in
(A3.62)–(A3.63) (see fifth column).

In Table A3.5.2, δ1 = 2.4 δ2 = 1.1, and kn = ⌈n1/α⌉, for α = 6, according to our Assumption A3,
which is also considered in [Bosq, 2000, p. 217] to ensure weak consistency of the proposed estimator of ρ.
In Table A3.5.3, the same empirical values are displayed for δ1 = 61

60
, δ2 = 1.1, and kn is selected according

to [Guillas, 2001, Example 2]. Thus, in Table A3.5.3,

kn = ⌈n
1−2ϵ

δ1(4+2γ) ⌉, γ ≥ 1, ϵ < 1/2. (A3.64)

In particular we have chosen γ = 2, and ϵ = 0.04δ1. Note that, from [Guillas, 2001, Theorem 1 and
Remark 1], for the choice made of kn in Table A3.5.3, convergence to ρ, in quadratic mean in the space
L(H), holds for ρ̂n,a given in (A3.62)–(A3.63).
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Table A3.5.2: Truncated empirical values of E∥ρ (Xn−1) − ρ̂kn(Xn−1)∥H , for ρ̂kn given in equations
(A3.15)-(A3.16) (third column), in equations (A3.60)–(A3.61) (fourth column), and in equations
(A3.62)–(A3.63) (fifth column), based on N = 700 simulations, for δ1 = 2.4 and δ2 = 1.1, consid-
ering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and the corresponding kn = ⌈n1/α⌉
values, for α = 6.

n kn Our Approach Bosq (2000) Guillas (2001)

n1 = 15000 4 2.25 (10)−2 2.57 (10)−2 2.36 (10)−2

n2 = 35000 5 1.71 (10)−2 1.72 (10)−2 1.84 (10)−2

n3 = 55000 6 1.51 (10)−2 1.65 (10)−2 1.53 (10)−2

n4 = 75000 6 1.29 (10)−2 1.46 (10)−2 1.37 (10)−2

n5 = 95000 6 1.14 (10)−2 1.20 (10)−2 1.16 (10)−2

n6 = 115000 6 1.07 (10)−2 1.10 (10)−2 1.11 (10)−2

n7 = 135000 7 1.04 (10)−2 1.06 (10)−2 1.07 (10)−2

n8 = 155000 7 9.66 (10)−3 9.91 (10)−3 1.01 (10)−2

n9 = 175000 7 9.65 (10)−3 9.79 (10)−3 9.68 (10)−3

n10 = 195000 7 8.79 (10)−3 9.12 (10)−3 8.93 (10)−3

n11 = 215000 7 8.74 (10)−3 8.79 (10)−3 8.83 (10)−3

n12 = 235000 7 8.12 (10)−3 8.69 (10)−3 8.75 (10)−3

n13 = 255000 7 7.95 (10)−3 8.53 (10)−3 8.73 (10)−3

n14 = 275000 8 7.94 (10)−3 8.52 (10)−3 8.58 (10)−3

n15 = 295000 8 7.76 (10)−3 8.49 (10)−3 8.36 (10)−3

n16 = 315000 8 7.64 (10)−3 7.88 (10)−3 8.13 (10)−3

n17 = 335000 8 7.04 (10)−3 7.24 (10)−3 7.59 (10)−3

n18 = 355000 8 7.04 (10)−3 7.23 (10)−3 6.92 (10)−3

n19 = 375000 8 6.84 (10)−3 6.89 (10)−3 6.90 (10)−3

n20 = 395000 8 6.65 (10)−3 6.67 (10)−3 6.85 (10)−3
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Table A3.5.3: Truncated empirical values of E∥ρ (Xn−1) − ρ̂kn(Xn−1)∥H , for ρ̂kn given in equations
(A3.15)–(A3.16) (third column), in equations (A3.60)–(A3.61) (fourth column), and in equations
(A3.62)–(A3.63) (fifth column), based on N = 700 simulations, for δ1 = 61

60 and δ2 = 1.1, consid-
ering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and the corresponding kn given in
(A3.64).

n kn Our Approach Bosq (2000) Guillas (2001)

n1 = 15000 2 9.91 (10)−3 1.39 (10)−2 1.26 (10)−2

n2 = 35000 3 8.78 (10)−3 1.34 (10)−2 1.24 (10)−2

n3 = 55000 3 7.89 (10)−3 1.15 (10)−2 1.14 (10)−2

n4 = 75000 3 6.49 (10)−3 1.01 (10)−2 8.58 (10)−3

n5 = 95000 3 6.36 (10)−3 9.09 (10)−3 8.29 (10)−3

n6 = 115000 3 6.14 (10)−3 7.65 (10)−3 7.26 (10)−3

n7 = 135000 3 5.91 (10)−3 7.03 (10)−3 6.69 (10)−3

n8 = 155000 3 5.73 (10)−3 6.77 (10)−3 6.54 (10)−3

n9 = 175000 3 5.44 (10)−3 6.74 (10)−3 6.16 (10)−3

n10 = 195000 3 5.10 (10)−3 6.69 (10)−3 5.97 (10)−3

n11 = 215000 4 5.01 (10)−3 6.48 (10)−3 5.94 (10)−3

n12 = 235000 4 4.85 (10)−3 6.45 (10)−3 5.83 (10)−3

n13 = 255000 4 4.17 (10)−3 6.17 (10)−3 5.68 (10)−3

n14 = 275000 4 4.64 (10)−3 5.99 (10)−3 5.60 (10)−3

n15 = 295000 4 4.55 (10)−3 5.94 (10)−3 5.58 (10)−3

n16 = 315000 4 4.48 (10)−3 5.69 (10)−3 5.50 (10)−3

n17 = 335000 4 4.38 (10)−3 5.58 (10)−3 5.44 (10)−3

n18 = 355000 4 4.16 (10)−3 5.45 (10)−3 5.42 (10)−3

n19 = 375000 4 3.91 (10)−3 5.34 (10)−3 5.32 (10)−3

n20 = 395000 4 3.86 (10)−3 5.29 (10)−3 5.26 (10)−3

One can observe in Table A3.5.2 a similar performance of the three methods compared with the trun-
cation order kn satisfying Assumption A3, with slightly worse results being obtained from the estimator
defined in (A3.62)–(A3.63), specially, for the sample size n8 = 155000. Furthermore, in Table A3.5.3,
a better performance of our approach is observed for the smallest sample sizes (from n1 = 15000 until
n4 = 75000). For the remaining largest sample sizes, only slight differences are observed, with, again,
a better performance of our approach, very close to the other two approaches presented in Bosq [2000];
Guillas [2001].

A3.5.2.2 Empirical–eigenvector–based componentwise estimators

In this section, we address the case where {ϕj, j ≥ 1} are unknown, as is often the case in practice.
Specifically, for a given sample size n, let {ϕn,j, j ≥ 1} be the empirical counterpart of the theoretical
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eigenvectors {ϕj, j ≥ 1}, satisfying, for every j ≥ 1,

Cn (ϕn,j) =
1

n

n−1∑
i=0

⟨Xi, ϕn,j⟩HXi = Cn,jϕn,j,

where{Cn,j, j ≥ 1}denotes the system of eigenvalues associated with the system of empirical eigenvectors
{ϕn,j, j ≥ 1}. We then consider the following estimators for comparison purposes

ρ̃n,j =

1
n−1

n−2∑
i=0

X̃i,jX̃i+1,j

1
n

n−1∑
i=0

(
X̃i,j

)2 , ρ̃kn =
kn∑
j=1

ρ̃n,jϕn,j ⊗ ϕn,j, (A3.65)

ρ̃n(x) =
(
Π̃knDnC

−1
n Π̃kn

)
(x) =

kn∑
l=1

ρ̃n,l(x)ϕn,l, x ∈ H,

ρ̃n,l(x) =
1

n− 1

n−2∑
i=0

kn∑
j=1

1

Cn,j
⟨ϕn,j, x⟩HX̃i,jX̃i+1,l, (A3.66)

ρ̃n,a(x) =
(
Π̃knDnC

−1
n,aΠ̃

kn
)
(x) =

kn∑
l=1

ρ̃n,a,l(x)ϕn,l, x ∈ H,

ρ̃n,a,l(x) =
1

n− 1

n−2∑
i=0

kn∑
j=1

1

max (Cn,j, an)
⟨ϕn,j, x⟩HX̃i,jX̃i+1,l, (A3.67)

where, for i ∈ Z, and j ≥ 1, X̃i,j = ⟨Xi, ϕn,j⟩H , Π̃
kn denotes the orthogonal projector into the space

H̃kn = span (ϕn,1, . . . , ϕn,kn) .

The Gaussian ARH(1) process is generated under Assumptions A1–A2, as well asC ′
1 in [Bosq, 2000,

p. 218]. Note that conditionsA1 andB′
1 in Bosq [2000] already hold. Moreover, as given in [Bosq, 2000,

Theorem 8.8 and Example 8.6], for

Cj = bCj
−δ1 , bC > 0, δ1 > 0,

with, in particular, δ1 = 2.4, and for

ρj = bρj
−δ2 , bρ > 0,
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with δ2 = 1.1,, the estimator ρ̃n converges almost surely to ρ under the condition

nC2
kn

ln(n)

(
kn∑
j=1

bj

)2 −→ ∞,

where

b1 = 2
√
2 (C1 − C2)

−1 , bj = 2
√
2max

{
(Cj−1 − Cj)

−1, (Cj − Cj+1)
−1
}
, j ≥ 2.

In Table A3.5.4, kn = ⌈ln(n)⌉ has been tested; see [Bosq, 2000, Example 8.6].

Table A3.5.4: Truncated empirical values of E {∥ρ (Xn−1)− ρ̃kn (Xn−1)∥H}, for ρ̃kn = ρ̃kn given in
equation (A3.65) (third column), ρ̃kn = ρ̃n defined in equation (A3.66) (fourth column) and ρ̃kn = ρ̃n,a
defined in equation (A3.67) (fifth column), based on N = 700 simulations, for δ1 = 2.4 and δ2 = 1.1,
considering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and kn = ⌈ln(n)⌉.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 9 8.42 (10)−2 1.061 1.035

n2 = 35000 10 5.51 (10)−2 1.019 1.005

n3 = 55000 10 4.75 (10)−2 1.017 0.999

n4 = 75000 11 4.43 (10)−2 1.015 0.995

n5 = 95000 11 3.68 (10)−2 1.013 0.988

n6 = 115000 11 3.51 (10)−2 1.011 0.963

n7 = 135000 11 3.23 (10)−2 1.008 0.925

n8 = 155000 11 2.95 (10)−2 1.007 0.912

n9 = 175000 12 2.94 (10)−2 1.006 0.911

n10 = 195000 12 2.80 (10)−2 0.995 0.891

n11 = 215000 12 2.71 (10)−2 0.902 0.862

n12 = 235000 12 2.59 (10)−2 0.890 0.820

n13 = 255000 12 2.58 (10)−2 0.878 0.800

n14 = 275000 12 2.35 (10)−2 0.872 0.783

n15 = 295000 12 2.28 (10)−2 0.860 0.778

n16 = 315000 12 2.27 (10)−2 0.842 0.747

n17 = 335000 12 2.16 (10)−2 0.822 0.714

n18 = 355000 12 2.14 (10)−2 0.800 0.707

n19 = 375000 12 2.09 (10)−2 0.778 0.687

n20 = 395000 12 2.06 (10)−2 0.769 0.662

A better performance of our estimator (A3.65) in comparison with estimator (A3.66), formulated in
Bosq [2000], and estimator (A3.67), formulated in [Guillas, 2001, Example 4 and Remark 4], is observed
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in Table A3.5.4. Note that, in particular, in [Guillas, 2001, Example 4 and Remark 4], smaller values of kn
than ln(n) are required for a given sample size n, to ensure convergence in quadratic mean, and, in partic-
ular, weak–consistency. However, considering a smaller discretization step size ∆t = 0.015 than in Table
A3.5.4, where ∆t = 0.08, and for kn = ⌈n1/6⌉, (i.e., α = 6), we obtain in Table A3.5.5, for the same
parameter values δ1 = 2.4 and δ2 = 1.1, better results than in Table A3.5.4, since a smaller number of
coefficients of ρ (parameters) to be estimated is considered in Table A3.5.5, from a richer sample informa-
tion (coming from the smaller discretization step size considered). One can also observe in Table A3.5.5 a
similar performance of the three approaches studied. In Table A3.5.6, the value kn = ⌈e′n1/(8δ1+2)⌉, with
e′ = 17

10
proposed in [Guillas, 2001, Example 4 and Remark 4] is considered to compute the truncated em-

pirical values of E {∥ρ(Xn−1)− ρ̃kn(Xn−1)∥H} , for ρ̃kn defined in equation (A3.65) (third column), for
ρ̃kn = ρ̃n given in equation (A3.66) (fourth column), and for ρ̃kn = ρ̃n,a in equation (A3.67) (fifth col-
umn). A similar performance of the three approaches is observed, with the exception of n20 = 395000,
where the approach presented in Guillas [2001] displays a slightly better performance

Table A3.5.5: Truncated empirical values of E {∥ρ (Xn−1)− ρ̃kn (Xn−1)∥H}, for ρ̃kn defined in equation
(A3.65) (third column), for ρ̃kn = ρ̃n given in equation (A3.66) (fourth column), and for ρ̃kn = ρ̃n,a
in equation (A3.67) (fifth column), based on N = 200 (due to high-dimensionality) simulations, for
δ1 = 2.4 and δ2 = 1.1, considering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and
kn = ⌈n1/6⌉.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 4 9.88 (10)−2 9.25 (10)−2 0.106

n2 = 35000 5 9.52 (10)−2 9.07 (10)−2 9.86 (10)−2

n3 = 55000 6 9.12 (10)−2 8.92 (10)−2 9.39 (10)−2

n4 = 75000 6 8.48 (10)−2 8.64 (10)−2 8.98 (10)−2

n5 = 95000 6 7.61 (10)−2 8.30 (10)−2 8.46 (10)−2

n6 = 115000 6 7.05 (10)−2 7.96 (10)−2 8.04 (10)−2

n7 = 135000 7 6.99 (10)−2 7.84 (10)−2 7.82 (10)−2

n8 = 155000 7 6.70 (10)−2 7.45 (10)−2 7.40 (10)−2

n9 = 175000 7 6.49 (10)−2 7.03 (10)−2 7.07 (10)−2

n10 = 195000 7 5.88 (10)−2 6.74 (10)−2 6.80 (10)−2

n11 = 215000 7 5.63 (10)−2 6.46 (10)−2 6.57 (10)−2

n12 = 235000 7 5.30 (10)−2 6.28 (10)−2 6.37 (10)−2

n13 = 255000 7 5.05 (10)−2 6.19 (10)−2 6.24 (10)−2

n14 = 275000 8 4.88 (10)−2 5.99 (10)−2 6.15 (10)−2

n15 = 295000 8 4.58 (10)−2 5.74 (10)−2 6.04 (10)−2

n16 = 315000 8 4.24 (10)−2 5.52 (10)−2 5.93 (10)−2

n17 = 335000 8 3.86 (10)−2 5.24 (10)−2 5.70 (10)−2

n18 = 355000 8 3.70 (10)−2 5.02 (10)−2 5.53 (10)−2

n19 = 375000 8 3.55 (10)−2 4.88 (10)−2 5.36 (10)−2

n20 = 395000 8 3.46 (10)−2 4.70 (10)−2 5.23 (10)−2
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Table A3.5.6: Truncated empirical values of E {∥ρ (Xn−1)− ρ̃kn (Xn−1)∥H}, for ρ̃kn defined in equation
(A3.65) (third column), for ρ̃kn = ρ̃n given in equation (A3.66) (fourth column), and for ρ̃kn = ρ̃n,a
in equation (A3.67) (fifth column), based on N = 200 (due to high-dimensionality) simulations, for
δ1 = 2.4 and δ2 = 1.1, considering the sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and
kn = ⌈e′n1/(8δ1+2)⌉, e′ = 17

10 .

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 2 6.78 (10)−2 8.77 (10)−2 6.64 (10)−2

n2 = 35000 2 6.72 (10)−2 8.61 (10)−2 6.30 (10)−2

n3 = 55000 2 6.46 (10)−2 8.48 (10)−2 6.17 (10)−2

n4 = 75000 2 6.24 (10)−2 8.20 (10)−2 5.76 (10)−2

n5 = 95000 2 5.42 (10)−2 7.84 (10)−2 5.03 (10)−2

n6 = 115000 2 4.84 (10)−2 7.34 (10)−2 4.56 (10)−2

n7 = 135000 2 4.27 (10)−2 6.95 (10)−2 3.94 (10)−2

n8 = 155000 2 3.64 (10)−2 6.60 (10)−2 3.65 (10)−2

n9 = 175000 3 3.51 (10)−2 6.52 (10)−2 3.42 (10)−2

n10 = 195000 3 3.38 (10)−2 6.16 (10)−2 3.24 (10)−2

n11 = 215000 3 3.16 (10)−2 5.78 (10)−2 2.85 (10)−2

n12 = 235000 3 2.98 (10)−2 5.53 (10)−2 2.60 (10)−2

n13 = 255000 3 2.83 (10)−2 5.15 (10)−2 2.34 (10)−2

n14 = 275000 3 2.50 (10)−2 4.85 (10)−2 2.05 (10)−2

n15 = 295000 3 2.23 (10)−2 4.46 (10)−2 1.83 (10)−2

n16 = 315000 3 2.15 (10)−2 4.30 (10)−2 1.58 (10)−2

n17 = 335000 3 2.06 (10)−2 4.14 (10)−2 1.40 (10)−2

n18 = 355000 3 1.98 (10)−2 3.95 (10)−2 1.24 (10)−2

n19 = 375000 3 1.89 (10)−2 3.77 (10)−2 1.05 (10)−2

n20 = 395000 3 1.82 (10)−2 3.70 (10)−2 9.93 (10)−3

A3.5.2.3 Kernel–based nonparametric and penalized estimation

In practice, curves are observed in discrete times, and should be approximated by smooth functions. In
Besse et al. [2000], the following optimization problem is considered:

X̂i = argmin
∥∥∥LX̂i

∥∥∥2
L2
, X̂i(tj) = Xi(tj), j = 1, . . . , p, i = 0, . . . , n− 1, (A3.68)

whereL is a linear differential operator of order d.Our interpolation is computed by Matlab smoothingspline
method. Non-linear kernel regression is then considered, in terms of the smoothed functional data, solution

196



to (A3.68), as follows:

X̂hn
n = ρ̂hn(Xn−1), ρ̂hn(x) =

n−2∑
i=0

X̂i+1K


∥∥∥X̂i − x

∥∥∥2
L2

hn


n−2∑
i=0

K


∥∥∥X̂i − x

∥∥∥2
L2

hn


,

whereK is the usual Gaussian kernel, and∥∥∥X̂i − x
∥∥∥2
L2

=

∫
(X̂i(t)− x(t))2dt, i = 0, . . . , n− 2.

Alternatively, in Besse et al. [2000], prediction, in the context of functional autoregressive processes
(FAR(1) processes), under the linear assumption on ρ,which is considered to be a compact operator, with
∥ρ∥ < 1, is also studied, from smooth data X̂1, . . . , X̂n, solving the optimization problem

min
X̂i∈Hq

1

n

n−1∑
i=0

(
1

p

p∑
j=1

(
Xi(tj)− X̂q,l

i (tj)
)2

+ l
∥∥∥D2X̂q,l

i

∥∥∥2
L2

)
, (A3.69)

where l is the smoothing parameter, Hq is the q–dimensional functional subspace spanned by the leading
eigenvectors of the autocovariance operator C associated with its largest eigenvalues. Thus, smoothness
and rank constraint are considered in the computation of the solution to the optimization problem (A3.69).
Such a solution is obtained by means of functional PCA.

The following regularized empirical estimators ofC andD are then considered, with inversion ofC in
the subspaceHq:

Ĉq,l =
1

n

n−1∑
i=0

X̂i ⊗ X̂i, D̂q,l =
1

n− 1

n−2∑
i=0

X̂i ⊗ X̂i+1.

Thus, the regularized estimator of ρ is given by

ρ̂q,l = D̂q,lĈ
−1
q,l ,

and the predictor
X̂q,l
n = ρ̂q,lXn−1.

Due to computational cost limitations, in Table A3.5.7, the following statistics are evaluated to compare the
performance of the two above-referred prediction methodologies:

EMAEhn
X̂n

=
1

p

p∑
j=1

(
Xn(tj)− X̂hn

n (tj)
)2
, (A3.70)
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EMAEq,l

X̂n
=

1

p

p∑
j=1

(
Xn(tj)− X̂q,l

n (tj)
)2
. (A3.71)

Table A3.5.7: EMAE
hn,i

X̂n
, i = 1, 2, and EMAEq,l

X̂n
values (see (A3.70) and (A3.71), respectively), with

q = 7, based on N = 200 simulations, for δ1 = 2.4 and δ2 = 1.1, considering now the sample sizes
{nt = 750 + 500(t− 1), t = 1, . . . , 13} hn,1 = 0.1 and hn,2 = 0.3.

n EMAE
hn,1

X̂n
EMAE

hn,2

X̂n
EMAEq,l

X̂n

n1 = 750 8.57 (10)−2 8.85 (10)−2 8.99 (10)−2

n2 = 1250 7.67 (10)−2 8.43 (10)−2 8.69 (10)−2

n3 = 1750 7.15 (10)−2 7.12 (10)−2 8.05 (10)−2

n4 = 2250 7.09 (10)−2 6.87 (10)−2 7.59 (10)−2

n5 = 2750 6.87 (10)−2 6.67 (10)−2 7.31 (10)−2

n6 = 3250 6.52 (10)−2 5.92 (10)−2 7.28 (10)−2

n7 = 3750 6.20 (10)−2 5.56 (10)−2 7.13 (10)−2

n8 = 4250 6.06 (10)−2 5.32 (10)−2 7.06 (10)−2

n9 = 4750 5.67 (10)−2 5.25 (10)−2 6.47 (10)−2

n10 = 5250 5.24 (10)−2 5.12 (10)−2 6.08 (10)−2

n11 = 5750 5.01 (10)−2 4.82 (10)−2 5.75 (10)−2

n12 = 6250 4.90 (10)−2 4.49 (10)−2 5.33 (10)−2

n13 = 6750 4.87 (10)−2 3.87 (10)−2 4.97 (10)−2

It can be observed a similar performance of the kernel–based and penalized FAR(1) predictors, from
smooth functional data, which is also comparable, considering one realization, to the performance obtained
in Table A3.5.6, from the empirical eigenvectors.

A3.5.2.4 Wavelet–based prediction for ARH(1) processes

The approach presented in Antoniadis and Sapatinas [2003] is now studied. Specifically, wavelet-based
regularization is applied to obtain smooth estimates of the sample paths. The projection onto the space
VJ , generated by translations of the scaling function ϕJk, k = 0, . . . , 2J − 1, at level J, associated with
a multiresolution analysis of H, is first considered. For a given primary resolution level j0, with j0 < J,
the following wavelet decomposition at J − j0 resolution levels can be computed for any projected curve
ΦVJXi, in the space VJ , for i = 0, . . . , n− 1 :

ΦVJXi =
2j0−1∑
k=0

cij0kϕj0k +
J−1∑
j=j0

2j−1∑
k=0

dijkψjk,

cij0k = ⟨ΦVJXi, ϕj0k⟩H , dijk = ⟨ΦVJXi, ψjk⟩H .
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For i = 0, . . . , n− 1, the following variational problem is solved to obtain the smooth estimate of the
curveXi :

inf
f i∈H

{∥∥ΦVJXi − f i
∥∥2
L2 + λ

∥∥∥ΦV ⊥
j0
f
∥∥∥2 ; f ∈ H

}
, (A3.72)

where ΦV ⊥
j0

denotes the orthogonal projection operator of H onto the orhogonal complement of Vj0 , and
for i = 0, 1 . . . n− 1,

f i =
2j0−1∑
k=0

αij0kϕj0k +
∞∑
j=j0

2j−1∑
k=0

βijkψjk.

Using the equivalent sequence of norms of fractional Sobolev spaces of order swith s > 1/2, on a suit-
able interval (in our case, s = δ1), the minimization of (A3.72) is equivalent to the optimization problem,
for i = 0, . . . , n− 1,

2j0−1∑
k=0

(αij0k − cij0k)
2 +

J−1∑
j=j0

2j−1∑
k=0

(dijk − βijk)
2 +

∞∑
j=j0

2j−1∑
k=0

λ2js[βijk]
2. (A3.73)

The solution to (A3.73) is given by, for i = 0, . . . , n− 1,

α̂ij0k = cij0k, k = 0, 1, . . . , 2j0 − 1,

β̂ij0k =
dijk

(1 + λ22sj)
, j = j0, . . . , J − 1, k = 0, 1, . . . , 2j − 1,

β̂ij0k = 0, j ≥ J, k = 0, 1, . . . , 2j − 1.

In particular, in the subsequent computations, we have considered the following value of the smoothing
parameter λ (see Angelini et al. [2003]):

λ̂M =

(
M∑
j=1

σ2
j

)(
M∑
j=1

Cj

)
n

.

The following smoothed data are then computed

X̃i,λ̂M =
2j0−1∑
k=0

α̂ij0kϕj0k +
J−1∑
j=j0

2j−1∑
k=0

β̂ij0kψjk,

removing the trend

ãn,λ̂M =
1

n

n−1∑
i=0

X̃i,λ̂M
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to obtain
Ỹi,λ̂M = X̃i,λ̂M − ãn,λ̂M , i = 0, . . . , n− 1,

for the computation of

ρ̃n,λ̂M (x) =
(
Π̃kn
λ̂M
D̃n,λ̂M C̃

−1

n,λ̂M
Π̃kn
λ̂M

)
(x) =

kn∑
l=1

ρ̃n,λ̂M ,l(x)ϕ̃
M
l , x ∈ H,

ρ̃n,λ̂M ,l(x) =
kn∑
j=1

1

n− 1

n−2∑
i=0

1

C̃n,λ̂M ,j

⟨ϕ̃Mj , x⟩H Ỹi,λ̂M ,jỸi+1,λ̂M ,l,

for x ∈ H and

C̃n,λ̂M =
1

n

n−1∑
i=0

Ỹi,λ̂M ⊗ Ỹi,λ̂M ,

where
Ỹi,λ̂M ,j =

⟨
Ỹi,λ̂M , ϕ̂j,λ̂M

⟩
,

and
C̃n,λ̂M ,j =

⟨
C̃n,λ̂M ϕ̂j,λ̂M

⟩
,

for every j ≥ 1. Table A3.5.8 displays the empirical truncated approximation of the expectation
E {∥ρ̃kn(Xn−1)− ρ(Xn−1)∥H} and E

{
∥ρ̃n,λ̂M (Xn−1)− ρ(Xn−1)∥H

}
, respectively obtained apply-

ing our approach, and the approach in Antoniadis and Sapatinas [2003], in the estimation of the autocorre-
lation operator ρ. Here, we have tested kni

= ⌈n1/αi⌉, i = 1, 2, with α1 = 6, according to Assumption
A3, and α2 > 4δ1, according to

H4 : nC
4
kn → ∞

in [Antoniadis and Sapatinas, 2003, p. 149]. In particular, we have considered δ1 = 2.4, and α2 = 10.
From the results displayed in Table A3.5.8, one can observe a similar performance for the two truncation
rules implemented, and approaches compared, for the small sample sizes tested. A similar accuracy is also
displayed by the approaches presented in Besse et al. [2000], for such small sample sizes (see Table A3.5.7).
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TableA3.5.8: Truncated empirical values of E {∥ρ(Xn−1)− ρ̃kn(Xn−1)∥H} , with ρ̃kn defined in equation
(A3.65), and of E

{
∥ρ̃

n,λ̂M
(Xn−1)− ρ(Xn−1)∥H

}
,, based on N = 200 simulations, for δ1 = 2.4 and

δ2 = 1.1, considering the sample sizes {nt = 750 + 500(t− 1), t = 1, . . . , 13}, using λ̂M , M = 50, and
the corresponding kn,i = ⌈n1/αi⌉, for α1 = 6 and α2 = 10. Here, O.A. means Our Approach.

n kn,1 O.A. Antoniadis and Sapatinas [2003] kn,2 O.A. Antoniadis and Sapatinas [2003]
750 3 0.070 0.091 1 0.064 0.059

1250 3 0.055 0.087 2 0.051 0.043

1750 3 0.047 0.080 2 0.045 0.039

2250 3 0.041 0.079 2 0.041 0.038

2750 3 0.037 0.073 2 0.036 0.035

3250 3 0.034 0.072 2 0.033 0.031

3750 3 0.033 0.068 2 0.033 0.029

4250 4 0.033 0.067 2 0.031 0.029

4750 4 0.032 0.066 2 0.031 0.026

5250 4 0.031 0.064 2 0.028 0.023

5750 4 0.030 0.060 2 0.020 0.019

6250 4 0.028 0.058 2 0.017 0.015

6750 4 0.028 0.056 2 0.019 0.014

A3.6 Final comments

As noted before, in this paper, the eigenvectors of C are considered to be known in the derivation of
the results on consistency. This assumption is satisfied, e.g., when the random initial condition is given as
the solution, in the mean-square sense, of a stochastic differential equation driven by white noise (e.g., the
Wiener measure), since the eigenvectors of the differential operator involved in that equation coincide with
the eigenvectors of the autocovariance operator of the ARH(1) process. In the case where the eigenvectors of
the autocovariance operator are unknown, the numerical results displayed in Tables A3.5.4–A3.5.6 illustrate
the fact that our approach displays, in terms of the empirical eigenvectors, very similar prediction results to
those obtained with the implementation of the componentwise estimators proposed in Bosq [2000]; Guillas
[2001], with a better performance of our approach in the more unfavorable case, corresponding to a large
discretization step size, and truncation order (see Table A3.5.4 computed for kn = ⌈ln(n)⌉).

Regarding Assumption A2, Remark A3.2.1 provides an example where this assumption is satisfied.
However, our approach can still be applied in a wider range of situations. Wavelet bases are well suited
for sparse representation of functions; recent work has considered combining them with sparsity-inducing
penalties, both for semiparametric regression (see, e.g., Wand and Ormerod [2011]), and for regression with
functional or kernel predictors (see Wand and Ormerod [2011]; Zhao et al. [2015, 2012], among others).
The latter papers focused on ℓ1 penalization, also known as the lasso (see Tibshirani [1996]), in the wavelet
domain. Alternatives to the lasso include the SCAD penalty by Fan and Li [2001], and the adaptive lasso by
Zou [2006]. The ℓ1 penalty in the elastic net criterion has the effect of shrinking small coefficients to zero.
This can be interpreted as imposing a prior that favors a sparse estimate. The above mentioned smoothing
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techniques, based on wavelets, can be applied to obtain a smooth sparse approximation X̂1, . . . X̂n of the
functional dataX1, . . . , Xn,whose empirical auto-covariance operator

Ĉn =
1

n

n−1∑
i=0

X̂i ⊗ X̂i

and cross-covariance operator

D̂n =
1

n− 1

n−2∑
i=0

X̂i ⊗ X̂i+1

admits a diagonal representation in terms of wavelets.
In the literature, shrinkage approaches for estimating a high–dimensional covariance matrix are em-

ployed to circumvent the limitations of the sample covariance matrix. In particular, a new family of nonpara-
metric Stein–type shrinkage covariance estimators is proposed in Touloumis [2015] (see also references
therein), whose members are written as a convex linear combination of the sample covariance matrix and of
a predefined invertible diagonal target matrix. These results can be applied to our framework, considering
the shrinkage estimators of the autocovariance and cross-covariance operators, with respect to a common
suitable wavelet basis, which can lead to an empirical diagonal representation of both operators.

In the Supplementary Material provided (see Appendix A3.7), a numerical example is provided to illus-
trate the performance of our approach, in the case of a pseudo–diagonal autocorrelation operator.

A3.7 SupplementaryMaterial: non–diagonal autocorrelation operator

This Section provides as a numerical example where the methodology proposed in such paper still works
beyond the considered Assumption A2. In particular, this section illustrates the performance of the pro-
posed estimation methodology, when Assumption A2 is not satisfied, but ρ is close to be diagonal in some
sense. The numerical results obtained are compared to those ones derived from the computation of the
ARH(1) predictors, based on the componentwise estimators proposed in Bosq [2000]; Guillas [2001]
where this diagonal assumption is not required. The Gaussian ARH(1) process generated has autocorre-
lation operator ρwith coefficients ρj,h with respect to the basis {ϕj ⊗ ϕh, j, h ≥ 1} , given by

ρ2j,j =

 λj

(
(−∆)(a,b)

)
λ1

(
(−∆)(a,b)

)
− ϵ

−δ2

, (A3.74)

in the diagonal, and outside of the diagonal

ρ2j,j+a =
0.01

5a2
, a = 1, . . . , 5, ρ2j+a,j =

0.02

5a2
, a = 1, . . . , 5, (A3.75)

where ρ2j,j+a = ρ2j+a,j = 0 when a ≥ 6. The coefficients of the autocovariance operatorCε of the innova-
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tion process ε,with respect to the mentioned basis {ϕj ⊗ ϕh, j, h ≥ 1} , are given by

σ2
j,j = Cj

(
1− ρ2j,j

)
in the diagonal, and outside of the diagonal by

σ2
j,j+a =

0.015

5a2
, a = 1, 2, 3, 4, 5, σ2

j+a,j =
0.01

5a2
, a = 1, 2, 3, 4, 5, (A3.76)

where σ2
j,j+a = σ2

j+a,j = 0 when a ≥ 6. Table A3.7.1 below displays the empirical truncated values of
E
{∥∥ρ(Xn−1)− ρ̂NDkn (Xn−1)

∥∥
H

}
based onN = 200 simulations of each one of the 20 functional samples

considered, with sizes{nt = 15000 + 20000(t− 1), t = 1, . . . , 20}, for the correspondingkn values ob-
tained, in this case, by the rule kn = ⌈n1/α⌉, with α = 6. We have considered parameter δ1 = 2.4 in the
definition of the eigenvalues of C; but, in this case, as noted before, operators ρ and Cε are non-diagonal
(see equations A3.75–A3.76). The estimators of ρ and the associated plug–in predictors are computed, for
the three approaches compared, under the assumption that the eigenvectors of C are known.

As expected, in Table A3.7.1, an outperformance of the approaches in Bosq [2000]; Guillas [2001] is
observed in comparison with our methodology. However, for large sample sizes, the ARH(1) prediction
methodology proposed here still can be applied with an order of magnitude of 10−2 for the empirical errors
associated with ρ̂kn given in equation A3.65. Thus, in the pseudodiagonal autocorrelation operator case, in
some sense, our approach could still be considered. As referred in our paper, an example is given in the case
where the autocovariance and autocorrelation operators admit a sparse representation in terms of a suitable
orthonormal wavelet basis (see, for instance, Angelini et al. [2003]; Antoniadis and Sapatinas [2003]).
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Table A3.7.1: Truncated empirical values of E
{∥∥ρ(Xn−1)− ρ̂NDkn (Xn−1)

∥∥
H

}
, for ρ̂NDkn given in equa-

tions (A3.15)–(A3.16) (third column), in equations (A3.60)–(A3.61) (fourth column), and in equations
(A3.62)–(A3.63) (fifth column), from the non–diagonal data generated by equations (A3.74)–(A3.76),
based on N = 200 (due to high–dimensionality) simulations, for δ1 = 2.4 and δ2 = 1.1, considering the
sample sizes {nt = 15000 + 20000(t− 1), t = 1, . . . , 20} and the corresponding kn = ⌈n1/α⌉, α = 6
values. The eigenvectors {ϕj , j ≥ 1} are assumed to be known.

n kn Our approach Bosq (2000) Guillas (2001)

n1 = 15000 4 0.581 8.94 (10)−2 0.1055

n2 = 35000 5 0.560 7.05 (10)−2 9.49 (10)−2

n3 = 55000 6 0.548 6.67 (10)−2 9.14 (10)−2

n4 = 75000 6 0.532 6.24 (10)−2 8.85 (10)−2

n5 = 95000 6 0.512 5.89 (10)−2 8.47 (10)−2

n6 = 115000 6 0.498 5.62 (10)−2 8.04 (10)−2

n7 = 135000 7 0.495 5.57 (10)−2 7.66 (10)−2

n8 = 155000 7 0.481 5.28 (10)−2 7.24 (10)−2

n9 = 175000 7 0.474 5.01 (10)−2 6.78 (10)−2

n10 = 195000 7 0.461 4.90 (10)−2 6.30 (10)−2

n11 = 215000 7 0.442 4.69 (10)−2 6.07 (10)−2

n12 = 235000 7 0.425 4.45 (10)−2 5.82 (10)−2

n13 = 255000 7 0.411 4.25 (10)−2 5.54 (10)−2

n14 = 275000 8 0.408 4.14 (10)−2 5.16 (10)−2

n15 = 295000 8 0.381 4.09 (10)−2 4.81 (10)−2

n16 = 315000 8 0.360 3.85 (10)−2 4.53 (10)−2

n17 = 335000 8 0.349 3.56 (10)−2 4.29 (10)−2

n18 = 355000 8 0.330 3.29 (10)−2 3.98 (10)−2

n19 = 375000 8 0.320 2.90 (10)−2 3.75 (10)−2

n20 = 395000 8 0.318 2.62 (10)−2 3.44 (10)−2
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ABSTRACT

Functional Analysis of Variance (FANOVA) from Hilbert–valued correlated data with spatial rectangular or cir-
cular supports is analysed, when Dirichlet conditions are assumed on the boundary. Specifically, a Hilbert–valued
fixed effectmodel, with error term defined froman autoregressiveHilbertian process of order one (ARH(1) process)
is considered, extending the formulation given in Ruiz-Medina [2016]. A new statistical test is also derived to con-
trast the significance of the functional fixed effect parameters. The Dirichlet conditions established at the boundary
affect the dependence range of the correlated error term. While the rate of convergence to zero of the eigenvalues
of the covariance kernels, characterizing the Gaussian functional error components, directly affects the stability of
the generalized least–squares parameter estimation problem. A simulation study and a real–data application, re-
lated to fMRI analysis, are undertaken to illustrate the performance of the parameter estimator and statistical test
derived.

A4.1 Introduction

In the last few decades, functional data analysis techniques have grown significantly given the new tech-
nologies available, in particular, in the field of medicine (see, for instance, Sorensen et al. [2013]). High–
dimensional data, which are functional in nature, are generated, for example, from measurements in time,
over spatial grids or images with many pixels (e.g., data on electrical activity of the heart, data on electrical ac-
tivity along the scalp, data reconstructed from medical imaging, expression profiles in genetics and genomics,
monitoring of continuity activity through accelerometers, etc). Effective experimental design and modern
functional statistics have led to recent advances in medical imaging, improving, in particular, the study of
human brain function (see, for example, Delzell et al. [2012]). Magnetic Resonance Imaging (MRI) data
have been analysed with different aims. For example, we refer to the studies related with cortical thickness
(see Lerch and Evans [2005]), where magnetic resonance imaging data are analysed to detect the spatial
locations of the surface of the brain, where the cortical thickness is correlated with an independent variable,
such as age or gender (see also Shaw et al. [2006]). Cortical thickness is usually previously smoothed along
the surface of the brain (see Chung et al. [2005]). Thus, it can be considered as a functional random vari-
able with spatial circular support. In general, the following linear model is considered, for cortical thickness
Yi(s) on subjects i = 1, . . . , n,:

Yi(s) = xiβ(s) + Zi(s)σi(s), s ∈ S, (A4.1)

wherexi is a vector of known p regressors, and for each s ∈ S,withS denoting the surface of the brain, pa-
rameterβ(s) is an unknown p–vector of regression coefficients. The errors {Z1, . . . , Zn} are independent
zero-mean Gaussian random fields. In Taylor and Worsley [2007], this model is also considered to detect
how the regressors are related to the data at spatial location s, by testing contrasts in β(s), for s ∈ S. The
approach presented in this paper allows the formulation of model (A4.1) in a functional (Hilbert–valued)
framework, incorporating possible correlations between subjects, due to genetic characteristics, breed, geo-
graphic location, etc.
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The statistical analysis of functional magnetic resonance image (fMRI) data has also generated an im-
portant activity in research about brain activity, where the functional statistical approach implemented in
this paper could lead to important spatio–temporal analysis improvements. It is well–known that fMRI
techniques have been developed to address the unobserved effect of scanner noise in studies of the audi-
tory cortex. A penalized likelihood approach to magnetic resonance image reconstruction is presented in
Bulaevskaya and Oehlert [2007]. A new approach which incorporates the spatial information from neigh-
bouring voxels, as well as temporal correlation within each voxel, which makes use of regional kriging is
derived in Christensen and Yetkin [2005]. Conditional autoregressive and Markov random field modelling
involves some restrictions in the characterization of spatially contiguous effect regions, and, in general, in
the representation of the spatial dependence between spatially connected voxels (see, for example, Baner-
jee et al. [2004]; Besag [1986]). Multiscale adaptive regression models assume spatial independence to
construct a weighted likelihood parameter estimate. At each scale, the weights determine the amount of in-
formation that observations in a neighborhood voxel provides on the parameter vector to be estimated at a
given voxel, under the assumption of independence between the conditional distributions of the responses
at the neighborhood voxels, for each scale. The weights are sequentially computed through different scales,
for adaptively update of the parameter estimates and test statistics (see, for example, Li et al. [2011]).

In Zhu et al. [2012], a multivariate varying coefficient model is considered for neuroimaging data, un-
der a mixed effect approach, to reflect dependence within–curve and between–curve, in the case where
coefficients are one–parameter functions, although extension to higher dimension is straightforward. The
approach presented in this paper adopts a functional framework to analyse multivariate varying coefficient
models in higher dimensions (two–dimensional design points), under the framework of multivariate fixed
effect models in Hilbert spaces. Namely, the response is a multivariate functional random variable reflecting
dependence within-surface (between voxels), and between-surface (between different times), with Hilbert–
valued multivariate Gaussian distribution. Hence, the varying coefficients are estimated from the application
of an extended version of generalized least–squares estimation methodology, in the multivariate Hilbert–
valued context (see Ruiz-Medina [2016]), while, in Zhu et al. [2012], local linear regression is applied to
estimate the coefficient functions. The dependence structure of the functional response is estimated here
from the moment–based parameter estimation of the ARH(1) error term (see Bosq [2000]). In Zhu et al.
[2012], local linear regression technique is employed to estimate the random effects, reflecting dependence
structure in the varying coefficient mixed effect model. An extended formulation of the varying coefficient
model considered in Zhu et al. [2012] is given in Zhu et al. [2014], combining a univariate measurement
mixed effect model, a jumping surface model, and a functional component analysis model. In the approach
presented in this paper, we have combined a nonparametric surface model with a multivariate functional
principal component approach in the ARH(1) framework. Thus, a continuous spatial variation of the fMRI
response is assumed, incorporating temporal and spatial correlations (across voxels), with an important di-
mension reduction in the estimation of the varying coefficient functions.

The above–referred advances in medicine are supported by the extensive literature on linear models in
function spaces developed in parallel in the last few decades. We particularly refer to the functional linear
regression context (see, for example, Cai and Hall [2006]; Cardot et al. [2003]; Cardot and Sarda [2011];
Chiou et al. [2004]; Crambes et al. [2009]; Cuevas et al. [2002]; Ferraty et al. [2013a]; Kokoszka et al.
[2008], among others). See also Bosq [2000, 2007]; Ruiz-Medina [2011, 2012], in the functional time
series context, and Ferraty and Vieu [2006, 2011] in the functional nonparametric regression framework.
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Functional Analysis of Variance (FANOVA) techniques for high–dimensional data with a functional back-
ground have played a crucial role, within the functional linear model literature as well. Related work has been
steadily growing (see, for example, Angelini et al. [2003]; Dette and Derbort [2001]; Gu [2002]; Huang
[1998]; Kaufman and Sain [2010]; Kaziska [2011]; Lin [2000]; Ramsay and Silverman [2005]; Spitzner
et al. [2003]; Stone et al. [1997]; Wahba et al. [1995]). The paper Ruiz-Medina [2016] extends the results
in Zoglat [2008] from theL2([0, 1])–valued context to the separable Hilbert–valued space framework, and
from the case of independent homocedastic error components to the correlated heteroscedastic case. In the
context of hypothesis testing from functional data, tests of significance based on wavelet thresholding are
formulated in Fan [1996], exploiting the sparsity of the signal representation in the wavelet domain, for di-
mension reduction. A maximum likelihood ratio based test is suggested for functional variance components
in mixed–effect FANOVA models in Guo [2002]. From classical ANOVA tests, an asymptotic approach
is derived in Cuevas et al. [2004], for studying the equality of the functional means from k independent
samples of functional data. The testing problem for mixed–effect functional analysis of variance models is
addressed in Abramovich and Angelini [2006]; Abramovich et al. [2004], developing asymptotically opti-
mal (minimax) testing procedures for the significance of functional global trend, and the functional fixed
effects. The wavelet transform of the data is again used in the implementation of this approach (see also An-
toniadis and Sapatinas [2007]). Recently, in the context of functional data defined by curves, considering
the L2–norm, an up–to–date overview of hypothesis testing methods for functional data analysis is pro-
vided in Zhang [2013], including functional ANOVA, functional linear models with functional responses,
heteroscedastic ANOVA for functional data, and hypothesis tests for the equality of covariance functions,
among other related topics.

In this paper, the model formulated in Ruiz-Medina [2016] is extended to the case where the error term
is an ARH(1) process. Furthermore, an alternative test to contrast the significance of the functional fixed
effect parameters is formulated, based on a sharp form of the Cramér–Wold’s Theorem derived in Cuesta-
Albertos et al. [2007], for Gaussian measures on a separable Hilbert space. The simulation study undertaken
illustrates the effect of the boundary conditions and the geometry of the domain on the spatial dependence
range of the functional vector error term. Specifically, in that simulations, we consider the case where the
Gaussian error components satisfy a stochastic partial differential equation, given in terms of a fractional
power of the Dirichlet negative Laplacian operator. The autocovariance and cross–covariance operators
of the functional error components are then defined in terms of the eigenvectors of the Dirichlet negative
Laplacian operator. The eigenvectors of the Dirichlet negative Laplacian operator vanish continuously at
the boundary, in the case of the regular domains studied (the rectangle, disk and circular sector), with decay
velocity determined by the boundary conditions and the geometry of the domain. Thus, the boundary con-
ditions and the geometry of the domain directly affect the dependence range of the error components, deter-
mined by the rate of convergence to zero of the Dirichlet negative Laplacian eigenvectors at the boundary.
The influence of the truncation order is studied as well, since the rate of convergence to zero of the eigen-
values of the spatial covariance kernels, that define the matrix covariance operator of the error term, could
affect the stability of the generalized least–squares estimation problem addressed here. Furthermore, in the
fMRI data problem considered, the presented functional fixed effect model, with ARH(1) error term, is fit-
ted. In that case, the temporal dependence range of the error term is controlled by the ARH(1) dynamics,
while the spatial dependence range is controlled by the boundary conditions. Thus, the performance of the
functional least–squares estimator and the functional significance test introduced in this paper is illustrated
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in both cases, the simulation study and the real–data example considered. A comparative study with the
classical approach presented in Worsley et al. [2002] is also achieved for the fMRI data set analysed (freely
available at http://www.math.mcgill.ca/keith/fmristat/).

The outline of this paper is as follows. The functional fixed effect model with ARH(1) error term is
formulated in Appendix A4.2. The main results obtained on generalized least–squares estimation of the
Hilbert–valued vector of fixed effect parameters, and the functional analysis of variance are also collected
in this appendix. Linear hypothesis testing is derived in Appendix A4.3. The results obtained from the
simulation study undertaken are displayed in Appendix A4.4. Functional statistical analysis of fMRI data is
given in Appendix A4.5. Conclusions and open research lines are provided in Appendix A4.6. Finally, the
Supplementary Material in Appendix A4.7 introduces the required preliminary elements on eigenvectors
and eigenvalues of the Dirichlet negative Laplacian operator on the rectangle, disk and circular sector.

A4.2 MultivariateHilbert–valuedfixedeffectmodelwithARH(1)errorterm

This section provides the extended formulation of the multivariate Hilbert–valued fixed effect model
studied in Ruiz-Medina [2016], to the case where the correlated functional components of the error term
satisfy an ARH(1) state equation. In that formulation, compactly supported non–separable autocovariance
and cross–covariance kernels are considered for the functional error components, extending the separable
case studied in Ruiz-Medina [2016].

Denote by H a real separable Hilbert space with the inner product ⟨·, ·⟩H , and the associated norm
∥ · ∥H . Let us first introduce the multivariate Hilbert–valued fixed effect model with ARH(1) error term

Y (·) = Xβ (·) + ε (·) , (A4.2)

where X is a real-valued n× pmatrix, the fixed effect design matrix,

β(·) = [β1(·), . . . , βp(·)]T ∈ Hp

represents the vector of fixed effect parameters,

Y(·) = [Y1(·), . . . , Yn(·)]T

is theHn-valued Gaussian response, with E {Y} = Xβ. TheHn-valued error term

ε(·) = [ε1(·), . . . , εn(·)]T

is assumed to be an ARH(1) process on the basic probability space (Ω,A,P); i.e., a stationary in time
Hilbert–valued Gaussian process satisfying (see Bosq [2000])

εm (·) = ρ (εm−1) (·) + νm (·) , m ∈ Z, (A4.3)

where E {εm} = 0, for each m ∈ Z, and ρ denotes the autocorrelation operator of the error process ε,
which belongs to the space of bounded linear operators on H. Here, ν = {νm, m ∈ Z} is assumed to be
a Gaussian strong white noise; i.e., ν is a Hilbert–valued zero–mean stationary process, with independent
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and identically distributed components in time, and with σ2 = E {∥νm∥2H} <∞, for allm ∈ Z.Thus, in
(A4.2), the components of the vector error term [ε1(·), . . . , εn(·)]T corresponding to observations at times
t1, . . . , tn, obey the functional state equation (A4.3), under suitable conditions on the point spectrum of
the autocorrelation operator ρ. Hence, the non–null functional entries of the matrix covariance operator
Rεε of

ε(·) = [ε1(·), . . . , εn(·)]T

are then constituted by the elements located at the three main diagonals. Specifically,

E {εi ⊗ εj} = R1, if j − i = 1, E {εi ⊗ εj} = R∗
1, if i− j = 1,

and
E {εi ⊗ εi} = R0, if i = j,

whereR1 andR∗
1 denote, respectively, the cross–covariance operator and its adjoint for the ARH(1) process

ε = {εi, i ∈ Z} , andR0 represents its autocovariance operator. Note that, in this appendix, it is assumed
that ρ is sufficiently regular. In particular, ρ is such that ∥ρ2∥L(H) ≃ 0.

Equivalently, the matrix covariance operator Rεε is given by

Rεε = E
{
[ε1(·), . . . , εn(·)]T [ε1(·), . . . , εn(·)]

}
=

 E {ε1 ⊗ ε1} . . . E {ε1 ⊗ εn}
... . . . ...

E {εn ⊗ ε1} . . . E {εn ⊗ εn}



≃


R0 R1 0H 0H . . . 0H 0H 0H
R∗

1 R0 R1 0H . . . 0H 0H 0H
...

...
...

... . . . ...
...

...
0H 0H 0H 0H . . . R∗

1 R0 R1

0H 0H 0H 0H . . . 0H R∗
1 R0

 ,

where 0H denotes the approximation by zero in the corresponding operator norm, given the conditions
imposed on ρ.

In the space H = Hn,we consider the inner product

⟨f ,g⟩Hn =
n∑
i=1

⟨fi, gi⟩H , f ,g ∈ Hn.

It is well–known that the autocovariance operator R0 of an ARH(1) process is in the trace class (see
[Bosq, 2000, pp. 27–36]). Therefore, it admits a diagonal spectral decomposition

R0 =
∞∑
k=1

λkϕk ⊗ ϕk,
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in terms of a complete orthogonal eigenvector system {ϕk, k ≥ 1} , defining inH a resolution of the iden-

tity
∞∑
k=1

ϕk ⊗ ϕk. Here, for each k ≥ 1, λk = λk(R0) is the k–th eigenvalue of R0, with

R0 (ϕk) = λk(R0)ϕk.The following series expansion then holds, in the mean–square sense:

εi =
∞∑
k=1

⟨εi, ϕk⟩H ϕk =
∞∑
k=1

√
λkηk(i)ϕk, i = 1, . . . , n,

where ηk(i) = 1√
λk
⟨εi, ϕk⟩H , for k ≥ 1 and i ∈ N.

The following assumption is made:

Assumption A0. The standard Gaussian random variable sequences {ηk(i), k ≥ 1, i ∈ N}, with, for
each k ≥ 1, √

λkηk(i) = ⟨εi, ϕk⟩H ,

for every i ∈ N, satisfy the following orthogonality condition, for every i, j ∈ N,

E {ηk(i)ηp(j)} = δk,p, k, p ∈ N,

where δ denotes the Kronecker delta function, and

R1 =
∞∑
k=1

λk(R1)ϕk ⊗ ϕk, R∗
1 =

∞∑
k=1

λk(R
∗
1)ϕk ⊗ ϕk.

UnderAssumptionA0, the computation of the generalized least–squares estimator of [β1(·), . . . , βp(·)]T
is achieved by projection into the orthogonal basis of eigenvectors {ϕk, k ≥ 1} of the autocovariance op-
eratorR0 of the ARH(1) process ε = {εi, i ∈ Z} .Denote by Φ∗ the projection operator into the eigen-
vector system {ϕk, k ≥ 1} , acting on a vector function f ∈ H = Hn as follows:

Φ∗ (f) = {Φ∗
k (f) , k ≥ 1} =

{
(⟨f1, ϕk⟩, . . . , ⟨fn, ϕk⟩)T , k ≥ 1

}
=

{
(fk1, . . . , fkn)

T , k ≥ 1
}
=
{
fTk , k ≥ 1

}
, (A4.4)

where ΦΦ∗ = IdH=Hn ,with

Φ
({

fTk , k ≥ 1
})

=

(
∞∑
k=1

fk1ϕk, . . . ,

∞∑
k=1

fknϕk

)T

.

For A = {Ai,j}j=1,...,n
i=1,...,n be a matrix operator such that, for each i, j = 1, . . . , n, its functional entries
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are given by

Ai,j =
∞∑
k=1

γkijϕk ⊗ ϕk

with
∞∑
k=1

γ2kij <∞.The following identities are straightforward:

Φ∗AΦ = {Γk, k ≥ 1} , Φ ({Γk, k ≥ 1})Φ∗ = A, (A4.5)

where, for each k ≥ 1, the entries of Γk are Γkij = γkij, for i, j = 1, . . . , n.

Applying (A4.4)–(A4.5), we directly obtain

Φ∗RεεΦ = {Λk, k ≥ 1} , Φ∗R−1
εεΦ =

{
Λ−1
k , k ≥ 1

}
,

R−1
εε (f ,g) = Φ∗R−1

εεΦ (Φ∗f ,Φ∗g) = ⟨f ,g⟩R−1
εε

=
∞∑
k=1

fTk Λ
−1
k gk, f , g ∈ R1/2

εε (Hn) ,

∥f∥2
R−1

εε
=

∞∑
k=1

fTk Λ
−1
k fk, f ∈ R1/2

εε (Hn) , (A4.6)

where, for each k ≥ 1, Λk = Φ∗
kRεεΦk is given by

Λk =


λk(R0) λk(R1) 0 . . . 0 0
λk(R

∗
1) λk(R0) λk(R1) . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . λk(R
∗
1) λk(R0)

 , (A4.7)

with Λ−1
k denoting its inverse matrix.

Remark A4.2.1 In Appendix A4.4, we restrict our attention to the functional error model studied in Ruiz-Medina
[2016], considering the Hilbert–valued stochastic partial differential equation system framework. In that frame-
work, matrices {Λk, k ≥ 1} , are known, since they are defined from the eigenvalues of the differential operators
involved in the equation system. Particularly, in that section, for each k ≥ 1, matrix Λk is considered to have
entriesΛkij given by

Λkij = exp

(
− |i− j|
λki + λkj

)
, if i ̸= j,

Λkii = λki = λk
(
[fi(−∆Dl

)]2
)
= λk

(
(−∆D1)

−2(d−γi)
)
= [λk ((−∆D1))]

−2(d−γi) ,

(A4.8)
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with
γi ∈ (0, d/2), i = 1, . . . , n,

and (−∆Dl
) representing the Dirichlet negative Laplacian operator on domain Dl, for l = 1 (the rectangle),

l = 2 (the disk) and l = 3 (the circular sector). However, in practice, as shown in Appendix A4.5 in the analysis
of fMRI data, matrices {Λk, k ≥ 1} , are not known, and should be estimated from the data. Indeed, in that
real–data example, we approximate the entries of {Λk, k ≥ 1} , from the coefficients (eigenvalues and singular
values), that define the diagonal spectral expansion of the empirical autocovariance R̂0 and cross covariance R̂1

operators, given by (see Bosq [2000])

R̂0 =
1

n

n∑
i=1

εi ⊗ εi, R̂1 =
1

n− 1

n−1∑
i=1

εi ⊗ εi+1, R̂∗
1 =

1

n− 1

n∑
i=2

εi ⊗ εi−1. (A4.9)

We also consider here the following semi–orthogonal condition for the non-square design matrix X :

Assumption A1. The fixed effect design matrix X is a semi–orthogonal non–square matrix. That is,

XTX = Idp, Idp ∈ Rp×p.

Remark A4.2.2 Assumption A1 implies (see Ruiz-Medina [2016])

∞∑
k=1

Tr
(
XTΛ−1

k X
)−1

<∞.

The generalized least–squares estimation of [β1(·), . . . , βp(·)]T is achieved by minimizing the loss
quadratic function in the norm of the Reproducing Kernel Hilbert Space (RKHS norm). Note that, for
an H–valued zero–mean Gaussian random variable with autocovariance operator RZ , the RKHS of Z is
defined by

H (Z) = R
1/2
Z (H)

(see, for example, Prato and Zabczyk [2002]).
From equation (A4.6) we get

E
{
∥Y −Xβ∥2R−1

εε

}
= R−1

εε (ε) (ε) =
∞∑
k=1

E
{
∥εk (βk) ∥2Λ−1

k

}
≃

∞∑
k=1

E
{
∥εk (βk) ∥2Λ̂−1

k

}
,

(A4.10)
where, in the last identity, for eachk ≥ 1,matrix Λ̂k represents the empirical counterpart ofΛk, constructed
from the eigenelements of R̂0, R̂1 and R̂1

∗
, considered whenR0 andR1 are unknown. Here,

ε = Y −Xβ, εk (βk) = Φ∗
k (Y −Xβ) , k ≥ 1.
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The minimum of equation (A4.10) is attached if, for each k ≥ 1, the expectation

E
{
∥εk (βk) ∥2Λ−1

k

}
is minimized, with, as before, Λ−1

k defining the inverse of matrix Λk given in (A4.7) (and approximated by
Λ̂k,whenR0 andR1 are unknown). That is,

β̂k =
(
β̂k1, . . . , β̂kp

)T
=
(
XTΛ−1

k X
)−1

XTΛ−1
k Yk,

and given by (
β̃k1, . . . , β̃kp

)T
=
(
XT Λ̂

−1

k X
)−1

XT Λ̂
−1

k Yk, (A4.11)

in the case whereR0 andR1 are unknown. Here, Yk = Φ∗
k (Y) is the vector of projections into ϕk of the

components of Y, for each k ≥ 1.
In the remaining of this section, we restrict our attention to the case where R0 and R1 are known. In

that case,

β̂ = Φ
({
β̂k, k ≥ 1

})
=

(
∞∑
k=1

β̂k1ϕk, . . . ,
∞∑
k=1

β̂kpϕk

)T

.

The estimated response is then given by Ŷ = Xβ̂. Under Assumption A1,

E

{
∞∑
k=1

p∑
i=1

β̂2
ki

}
=

∞∑
k=1

Tr(XTΛ−1
k X)−1 + ∥β∥2Hp <∞, (A4.12)

i.e., β̂ ∈ Hp almost surely (see Ruiz-Medina [2016] for more details).

Remark A4.2.3 In the case whereR0 andR1 are unknown, under the conditions assumed in [Bosq, 2000, Corol-
lary 4.2, pp. 101–102], strong consistency of the empirical autocovariance operator R̂0 holds. Moreover, under
the conditions assumed in [Bosq, 2000, Theorem 4.8, pp. 116–117], the empirical cross–covariance operator R̂0

is strongly–consistent. Therefore, the plug–in functional parameter estimator (A4.11) satisfies (A4.12), for n suf-
ficiently large.

The Functional Analysis of Variance of model in (A4.2)–(A4.3) can be achieved as described in Ruiz-
Medina [2016]. Specifically, a linear transformation of the functional data should be considered, for the
almost surely finiteness of the functional components of variance, in the following way:

WY = WXβ +Wε, (A4.13)

where W is such that
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W =



∞∑
k=1

wk11ϕk ⊗ ϕk . . .

∞∑
k=1

wk1nϕk ⊗ ϕk

... . . . ...
∞∑
k=1

wkn1ϕk ⊗ ϕk . . .

∞∑
k=1

wknnϕk ⊗ ϕk

 ,

and satisfies

∞∑
k=1

Tr
(
Λ−1
k Wk

)
<∞. (A4.14)

Here, for each k ≥ 1,Λk is defined in (A4.7). The functional components of variance associated with
the transformed model (A4.13) are then given by

S̃ST = ⟨WY,WY⟩R−1
εε

=
∞∑
k=1

YT
kW

T
kΛ

−1
k WkYk,

S̃SE = ⟨W
(
Y − Ŷ

)
,W

(
Y − Ŷ

)
⟩R−1

εε
=

∞∑
k=1

(MkWkYk)
T Λ−1

k MkWkYk,

S̃SR = S̃ST − S̃SE.

where Mk = Idn×n −X
(
XTΛ−1

k X
)−1

XTΛ−1
k , for each k ≥ 1.

The statistics

F =
S̃SR

S̃SE
, (A4.15)

provides information on the relative magnitude between the empirical variability explained by the functional
transformed model and the residual variability (see Appendix A4.4).

A4.3 Significance test from the Cramér–Wold’s Theorem

In Ruiz-Medina [2016], a linear functional statistical test is formulated, with explicit definition of the
probability distribution of the derived functional statistics under the null hypothesis:

H0 : Kβ = C,

against
H1 : Kβ ̸= C,

where C ∈ Hm and
K : Hp −→ Hm
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is a matrix operator such that its functional entries K = {Kij}j=1,...,p
i=1,...,m , are given, for each f, g ∈ H, by

Kij (f) (g) =
∞∑
k=1

λk (Kij) ⟨ϕk, g⟩H⟨ϕk, f⟩H .

In particular,
{(Φ∗

kKΦk) , k ≥ 1} = {Kk, k ≥ 1}

with

Kk =

 λk (K11) . . . λk (K1p)
... . . . ...

λk (Km1) . . . λk (Kmp)

 ∈ Rm×p.

At level α, there exists a testψ given by:

ψ =

{
1 if SH0(Y) > C(H0, α),
0 otherwise,

where
SH0(Y) =

⟨
Kβ̂ −C,Kβ̂ −C

⟩
H=Hn

.

The constantC(H0, α) is such that

P {SH0(Y) > C(H0, α), Kβ = C} = 1− P {SH0(Y) ≤ C(H0, α), Kβ = C} = 1− Fα = α,

where the probability distributionFonH = Hn has characteristic functional given in [Ruiz-Medina, 2016,
Proposition 4, Eq. (66)].

Alternatively, as an application of [Cuesta-Albertos et al., 2007, Theorem 4.1], a multivariate version
of the significance test formulated in Cuesta-Albertos and Febrero-Bande [2010] is considered here, for
the fixed effect parameters (see, in particular, [Cuesta-Albertos and Febrero-Bande, 2010, Theorem 2.1].
Specifically, we consider

Hh
0 : Kβ(h) = C, (A4.16)

for h = (h, . . . , h)Tp×1 defining a random vector in Hp, with h generated from a zero–mean Gaussian
measure µ inH,with trace covariance operatorRµ (see, for example, Prato and Zabczyk [2002]). Here,

β(h) =
(
⟨β1, h⟩H , . . . , ⟨βp, h⟩H

)T
p×1

,
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K is given by

K =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
... . . . ...

1 0 0 . . . −1

 ∈ R(p−1)×p, (A4.17)

and C is a null (p− 1)× 1 functional vector; i.e.,

C = (0, 0, . . . , 0)T ∈ R(p−1)×1. (A4.18)

From equations (A4.17)–(A4.18), for any (p× 1)–dimensional functional random vector
h = (h, . . . , h)Tp×1 generated from a Gaussian measure µ on H, Hh

0 can then be equivalently expressed
as

Hh
0 : ⟨β1, h⟩H = ⟨β2, h⟩H = · · · = ⟨βp, h⟩H . (A4.19)

The test statistic to contrast (A4.19) is defined as

Th =
(
Kβ̂(h)−C

)T (
KQhK

T
)−1
(
Kβ̂(h)−C

)
, (A4.20)

where K and C are respectively given in equations (A4.17)–(A4.18), and

Qh = (XTΛhX)−1, β̂(h) =
(
XTΛ−1

h X
)−1

XTΛ−1
h Y(h), (A4.21)

with
Y(h) = (⟨Y1, h⟩H , . . . , ⟨Yn, h⟩H) .

Here, Λh is a (n× n)–dimensional matrix with entries {Λh(i, j)}j=1,...,n
i=1,...,n , given by

Λh(i, j) =
∞∑
k=1

[⟨h, ϕk⟩H ]
2 λk(Rij), i, j = 1, . . . , n,

where, as before, λk(Rij) denotes the k–th coefficient in the diagonal expansion of the covariance operator
Rij with respect to the basis {ϕk ⊗ ϕk, k ≥ 1}; i.e., in the diagonal expansion

Rij =
∞∑
k=1

λk(Rij)ϕk ⊗ ϕk, i, j = 1, . . . , n.

Note that in the ARH(1) error term case described in Appendix A4.2, from equation (A4.7),

λk(Rij) = 0, for |i− j| > 1, k ≥ 1.

Assuming that the autocovariance and cross–covariance operator of the ARH(1) error terms are known,
under the null hypothesisHh

0 , the conditional distribution of Th in (A4.20), given Y = h, is a chi–square
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distribution with p− 1 degrees of freedom. Here, Y is a zero-meanH–valued random variable with Gaus-
sian probability measure µ onH, having trace covariance operatorRµ.Note that the last assertion directly
follows from the fact that, in equation (A4.21), the conditional distribution of β̂(h) given Y = h is

β̂(h) ∼ N (β(h),Qh),

with Qh being introduced in equation (A4.21); i.e., the conditional distribution of β̂(h), given Y = h, is a
multivariate Gaussian distribution with mean vectorβ(h) and covariance matrix Qh.

From [Cuesta-Albertos et al., 2007, Theorem 4.1] and [Cuesta-Albertos and Febrero-Bande, 2010, The-
orem 2.1], if

H0 : β1(·) = β2(·) = · · · = βp(·)

fails, then, for µ-almost every function h ∈ H,Hh
0 in (A4.16), or equivalently in (A4.19), also fails. Thus,

a statistical test at level α to testHh
0 is a statistical test at the same level α to testH0.

A4.4 Simulation study

In this section, we consider the real separable Hilbert space

H = L2
0 (Dl) = C∞

0 (Dl)
L2(R2)

,

the closure, in the norm of the square integrable functions in R2, of the space of infinitely differentiable
functions with compact support contained inDl, for each l = 1, 2, 3.We restrict our attention to the family
of error covariance operators given in (A4.8). Thus, for each i, j = 1, . . . , n,

Rεiεj = Rij = E {εi ⊗ εj} =
∞∑
k=1

(
δ∗i,j exp

(
− |i− j|
λki + λkj

)
+ δi,j

√
λkiλkj

)
ϕk ⊗ ϕk, (A4.22)

where δ∗i,j = 1 − δi,j, and δi,j is the Kronecker delta function. As before, for each i, j = 1, . . . , n and
k ≥ 1,

λki = λk(Rii), λk(Rij) = exp

(
− |i− j|
λki + λkj

)
.

Note that the above error covariance operator models correspond to define, for i = 1, . . . , n, the func-
tional Gaussian error component εi as the solution, in the mean–square sense, of the stochastic partial dif-
ferential equation

(−∆Dl
)(d−γi)εi = ξi, γi ∈ (0, d/2),

with ξi being spatial Gaussian white noise onL2(Dl), for l = 1, 2, 3.
To approximate

FMSEβ = E
{
∥β (·)− β̂ (·) ∥2Hp

}
,
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ν samples are generated for the computation of

EFMSEβ =
ν∑
v=1

p∑
s=1

∥βvs (·)− β̂
v

s (·) ∥2H

ν
, (A4.23)

the empirical functional mean–square error EFMSEβ associated with the functional estimates{
β̂
v

s (·) =
(
β̂vs (x1, y1) , . . . , β̂

v
s (xL, yL)

)
, s = 1, . . . , p, v = 1, . . . , ν

}
of β, where L is the number of nodes considered in the regular grid constructed over the domains
{Dl, l = 1, 2, 3} .

Also, we will compute the following statistics:

L∞
β (·) =

ν∑
v=1

(
∥ε2β,v (x1, y1) ∥∞, . . . , ∥ε2β,v (xL, yL) ∥∞

)
ν

,

where
ε2β,v (xj, yj) =

(
ε2βv

1
(xj, yj) , . . . , ε

2
βv
p
(xj, yj)

)
, j = 1, . . . , L,

and

εβv
s
(xj, yj) = βvs (xj, yj)− β̂vs (xj, yj) , s = 1, . . . , p, j = 1, . . . , L, v = 1, . . . , ν,

with ∥ · ∥∞ denoting theL∞–norm.

Let
{Yv

i (·) = (Y v
i (x1, y1) , . . . , Y

v
i (xL, yL)) , i = 1, . . . , n, v = 1, . . . , ν}

be the generated functional samples. The empirical approximation of

FMSEY = E
{
∥Y (·)− Ŷ (·) ∥2Hn

}
,

with FMSEY being the FMSE of Y, can be computed as follows:

EFMSEY =
ν∑
v=1

n∑
i=1

∥Yv
i (·)− Ŷv

i (·) ∥2H

ν
. (A4.24)

Also, we will consider the statistics

L∞
Y (·) =

ν∑
v=1

(
∥ε2Y,v (x1, y1) ∥∞, . . . , ∥ε2Y,v (xL, yL) ∥∞

)
ν

,
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where

ε2Y,v (xj, yj) =
(
ε2Yv

1
(xj, yj) , . . . , ε

2
Yv

n
(xj, yj)

)
, εYv

i
(xj, yj) = Yv

i (xj, yj)− Ŷv
i (xj, yj) ,

for i = 1, . . . , n, j = 1, . . . , L, and v = 1, . . . , ν.
In the following numerical examples, the functional analysis of variance is implemented from a trans-

formed functional data model, considering the matrix operatorW such that, for each k ≥ 1,Φ∗
kW = Wk

compensates the divergence of the eigenvalues of Λ−1
k . Thus, condition (A4.14) is satisfied. Hence, for all

k ≥ 1,Wk can be defined as

Wk = ΨkΩ (Wk)Ψ
T
k , (A4.25)

where Ω (Wk) = diag (ωk11, . . . , ωknn) denoting a diagonal matrix, which elements are defined by

wkii = ωi (Λk) +
1

ak
,

under
∞∑
k=1

1

ak
<∞.

We have chosen ak = k2. Here, for each k ≥ 1, Ψk denotes the projection operator into the system
{ψlk, l = 1, . . . , n} of eigenvectors of matrix Λk, and {ωi (Λk) , i = 1, . . . , n} are the associated eigen-
values (see Ruiz-Medina [2016]).

In practice, the infinite series defining the generalized least–squares estimator, and the functional com-
ponents of variance is truncated atTR. Specifically, in the rectangle, we work with a two–dimensional trun-
cation parameter TR = TR1 × TR2, and, for circular domains, we fix a one–dimensional parameter (the
order k of Bessel functions), thus, TR1 = 1, and move the second truncation parameter associated with
the radiusR (see Appendices A4.7.2–A4.7.3). We then have

β̂ ≃ Φ
({
β̂k, k = 1, . . . , TR

})
, (A4.26)

S̃SE ≃
TR∑
k=1

(MkWkYk)
T Λ−1

k MkWkYk, (A4.27)

S̃ST ≃
TR∑
k=1

YT
kW

T
kΛ

−1
k WkYk, (A4.28)

S̃SR = S̃ST − S̃SE, (A4.29)
Λk = ΨkΩ (Λk)Ψ

T
k , k = 1, . . . , TR, (A4.30)

Wk = ΨkΩ (Wk)Ψ
T
k , k = 1, . . . , TR. (A4.31)

From the transformed model (A4.13), the finite–dimensional approximations (A4.27)–(A4.31) of S̃SE,
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S̃ST , and S̃SR, respectively, are computed to obtain the values of the statistics (A4.15), reflecting the rel-
ative magnitude between the empirical functional variability explained by the model and the residual vari-
ability.

In the computation of the test statistics Th, a truncation order is also considered in the calculation of
the elements defining matrix Λh.

In all the subsequent sections, the truncation order TR has been selected according to the following
criteria:

(i) The percentage of explained functional variance. In all the subsequent numerical examples, the TR
values considered always ensure a percentage of explained functional variance larger or equal than
95%.

(ii) The rate of convergence to zero of the eigenvalues of the covariance operators, defining the functional
entries of the matrix covariance operator of theHn–valued error term. Specifically, in the simulation
study undertaken, according to the asymptotic order (rate of convergence to zero) of such eigenvalues,
we have selected the optimal TR to remove divergence of the spectra of the corresponding inverse
covariance operators.

(iii) The functional form of the eigenvectors, depending on the geometry of the domain and the Dirichlet
conditions on the boundary. Small truncation orders or values of TR are considered, when fast de-
cay velocity to zero is displayed at the boundary, by the common eigenvectors of the autocovariance
operators of the error components, since, in that case, the error dependence range is shorter.

Summarizing, lower truncation orders are required when a fast decay velocity to zero is displayed by the
covariance kernel eigenvalues, since a sufficient percentage of explained variability is achieved with a few
terms. Note that larger truncation orders can lead to a ill–posed nature of the functional parameter esti-
mation problem, and associated response plug-in prediction. In the subsequent sections, applying criteria
(i)–(iii), a smaller number of terms is required in circular domains than in rectangular domains.

A4.4.1 Rectangular domain

TheHn–valued zero–mean Gaussian error term is generated from the matrix covariance operatorRεε,

whose functional entries
{
Rεiεj

}j=1,...,n

i=1,...,n
, are defined in equation (A4.22), with for i = 1, . . . , n,

λki = λk(Rii) being given in equations (A4.8) and (A4.36). Specifically, {ϕk, k ≥ 1} are the eigenvec-
tors of the Dirichlet negative Laplacian operator on the rectangle, associated with the eigenvalues of such an
operator (see equation (A4.36) in the Supplementary Material in Appendix A4.7), arranged in decreasing
order of their modulus magnitude.

Let us now define the scenarios studied for the rectangular domain

D1 =
2∏
i=1

[ai, bi] ,
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where ν = 20 functional samples of size n = 200 have been considered, for a given semi–orthogonal
design matrix

X ∈ Rn×p, XTX = Idp.

These scenarios are determined from the possible values of the vector variable (Pi, u, Ci), where Pi refers
to the number of components ofβ, specifically, for i = 1, p = 4 components, and for i = 2, p = 9 compo-
nents. Here, u takes the values a, b, c, d respectively corresponding to the truncation orders
TR = 16 (u = a), TR = 36 (u = b), TR = 64 (u = c) and TR = 144 (u = d). In addition,
{Ci, i = 1, 2} indicate the shape ofβ. Specifically, we have considered

• βs (x, y) = sin
(
πsxb1
l1

)
sin
(
πsyb2
l2

)
(C1)

• βs (x, y) = cos
(
xb1+xa1

l1

)
cos
(
yb2+ya2

l2

)
(C2),

where

xb1 =
π

2
(2s+ 1) (b1 − x) , xa1 = (x− a1) , yb2 =

π

2
(2s+ 1) (b2 − y) , ya2 = (y − a2)

and s = 1, . . . , p.

A summary of the generated and analysed scenarios are displayed in Table A4.4.1 below.

Table A4.4.1: Scenarios for rectangular domain.

Cases a1 = a2 b1 = b2 hx = hy p TR

(P1,a,C1) −2 3 0.05 4 4× 4

(P1,b,C2) −2 3 0.05 4 6× 6

(P1,c,C2) −2 3 0.05 4 8× 8

(P1,d,C1) −2 3 0.05 4 12× 12

(P2,a,C2) −2 3 0.05 9 4× 4

(P2,b,C1) −2 3 0.05 9 6× 6

(P2,c,C1) −2 3 0.05 9 8× 8

(P2,d,C2) −2 3 0.05 9 12× 12

In Table A4.4.1, hx and hy refer to the discretization step size at each dimension. In the cases (P1,a,C1)
and (P2,a,C2), a generation of a functional value (surface) of the response is respectively represented in
Figures A4.4.1–A4.4.2.
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Figure A4.4.1: Case (P1,a,C1). Simulated response with p = 4, TR = 16 and β of type C1.

Figure A4.4.2: Case (P2,a,C2). Simulated response with p = 9, TR = 16 and β of type C2.

Figures A4.4.3–A4.4.4 below show the respective functional estimates Ŷ = Xβ̂ of the responses dis-
played in Figures A4.4.1–A4.4.2 above.
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Figure A4.4.3: Case (P1,a,C1). Estimated response with p = 4, TR = 16 and β of type C1.

Figure A4.4.4: Case (P2,a,C2). Estimated response with p = 9, TR = 16 and β of type C2.

The statistics (A4.23)–(A4.24) are evaluated in all the cases displayed in Table A4.4.1 (see Tables A4.4.2–
A4.4.3 for the statisticsL∞

β andL∞
Y , respectively).
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Table A4.4.2: EFMSEβ for rectangular domain.

EFMSEβ

(P1,a,C1) (P1,b,C2) (P1,c,C2) (P1,d,C2)
1.070 (10)−3 1.060 (10)−3 1.040 (10)−3 1.040 (10)−3

(P2,a,C2) (P2,b,C1) (P2,c,C1) (P2,d,C2)
9.400 (10)−4 9.300 (10)−4 9.300 (10)−4 9.100 (10)−4

Table A4.4.3: EFMSEY for rectangular domain.

EFMSEY

(P1,a,C1) (P1,b,C2) (P1,c,C2) (P1,d,C2) (P2,a,C2) (P2,b,C1) (P2,c,C1) (P2,d,C2)
0.014 0.013 0.010 0.009 0.011 0.011 0.009 0.007

As expected, the results displayed in Table A4.4.2, corresponding to the empirical functional mean
quadratic errors associated with the estimation ofβ, are less than the ones obtained in Table A4.4.3 for the
response, with order of magnitude 10−3 in all the scenarios generated. In Table A4.4.3, we can appreciate
a better performance of the generalized least–squares estimator for the higher truncation orders. However,
we have to note that, even for the smallest truncation order considered; i.e., for TR = 4× 4 = 16, a good
performance is observed with associated empirical functional mean quadratic errors having order of magni-
tude 10−2 in all the cases displayed in Table A4.4.1 (see the above truncation order criteria (i)–(iii)). It can
also be observed that the number of components of parameter β, and their functional shapes do not affect
the accuracy of the least–squares generalized estimations of the functional values of the response. It can also
be observed that the number of components of parameter β, and their functional shapes do not affect the
accuracy of the least–squares generalized estimations of the functional values of the response.

The statistics (A4.15) is now computed, as an empirical approximation of the relative magnitude be-
tween the explained functional variability and the residual variability, after fitting the transformed Hilbert–
valued fixed effect model (A4.13). The results obtained are given in Table A4.4.4. It can be observed that,
in all the cases studied, the explained functional variability exceeds the residual functional variability. The
truncation order, the number of components of β, and the functional shape of such components do not
substantially affect the goodness of fit of the transformed Hilbert–valued fixed effect model in (A4.13).

Table A4.4.4: F statistics (A4.15) for rectangular domain.

Cases (P1,a,C1) (P1,b,C2) (P1,c,C2) (P1,d,C1) (P2,a,C2) (P2,b,C1) (P2,c,C1) (P2,d,C2)
F 1.926 1.717 1.673 1.626 1.898 1.845 1.761 1.606

Let us now compute the statistics Th in (A4.20) to contrast the significance of parameter vector β in
Case C1, when p = 4. To apply [Cuesta-Albertos et al., 2007, Theorem 4.1] and [Cuesta-Albertos and
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Febrero-Bande, 2010, Theorem 2.1], we have generated eight realizations of a Gaussian random functionh,
from the trajectories of the Gaussian random field ξ, solution, in the mean–square sense, of the following
boundary value problem:

(−∆)ξ(x) = ς(x), x = (x1, x2) ∈ [−2, 3]× [−2, 3],

ξ(−2, x2) = ξ(3, x2) = ξ(x1,−2) = ξ(x1, 3) = 0, x1, x2 ∈ [−2, 3]× [−2, 3],

(A4.32)

where ς denotes a zero–mean Gaussian white noise onL2([−2, 3]× [−2, 3]); i.e., a zero–mean generalized
Gaussian process satisfying

∫
[−2,3]×[−2,3]

f(x)E {ς(y)ς(x)} dx = f(y), y ∈ [−2, 3]× [−2, 3], ∀f ∈ L2([−2, 3]× [−2, 3]).

Table A4.4.5 below reflects the percentage of successes, for α = 0.05, and the averaged p–values over
the 150 samples of the response generated with parameter β of C1 type having p = 4 components, and
with size n = 150, for TR = 4× 4.

Table A4.4.5: Rectangle. Percentage of successes for α = 0.05, at the left–hand side, and averaged p–
values at the right–hand side, for each one of the eight realizations considered of the Gaussian function
h ∈ L2([−2, 3]× [−2, 3]).

D % Success p

1 100% 0

2 100% 0

3 99.75% 1.998(10)−8

4 100% 0

5 99.8% 7.541(10)−7

6 100% 0

7 100% 0

8 100% 6.441(10)−10

A high percentage of successes and very small p–values are observed in Table A4.4.5; i.e., a good perfor-
mance of the test statistics is observed.

A4.4.2 Disk domain

In the disk domain
D2 =

{
x ∈ R2 : 0 < ∥x∥ < R

}
,
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the zero–mean Gaussian Hn–valued error term is generated from the matrix covariance operator Rεε,
whose functional entries are defined in equation (A4.22), considering the eigenvectors {ϕk, k ≥ 1} of
the Dirichlet negative Laplacian operator on the disk (see equation (A4.37) in the Supplementary Material
in Appendix A4.7), arranged in decreasing order of the modulus magnitude of their associated eigenvalues.
Specifically, for i = 1, . . . , n, λki = λk(Rii) in (A4.22) is defined in equations (A4.8) and (A4.37). Again,
ν = 20 functional samples of sizen = 200 of the response have been generated. The cases studied are sum-
marized in terms of the vector (Pi, u, Cj), i = 1, 2, j = 1, 2, 3, with variable u = a, b, c, d, e, f.Namely,
it is considered u = a for TR = 3, u = b for TR = 5, u = c for TR = 7, u = d for TR = 15, u = e
for TR = 31, and u = f for TR = 79. Furthermore, Pi indicates the number of components of β, with
p = 4 for i = 1, and p = 9 for i = 2. Finally, the values of Cj, j = 1, 2, 3, refer to the shape of the
components ofβ, defined from their projections, in terms of the following equations:

βks =
(−1)s

k3.5
e(

k
TR)

7.5+2s−1

P (s, k)2.5+2s−1

+ e(
k

TR)
6.5+2s−1

P (s, k)3.5+2s−1 , k = 1, . . . , TR, s = 1, . . . , p (C1)

βks =
1

R
e

s+ k
R

n + k cos

(
(−1)k 2π

R

k

)
, k = 1, . . . , TR, s = 1, . . . , p (C2)

βks =
1

k2.5+2s−1
P (s, k)1.5+2s−1 , k = 1, . . . , TR, s = 1, . . . , p (C3)

P (s, k) = 1 +

(
k

TR

)2

+

(
TR− k + 1

TR

)4

, k = 1, . . . , TR, s = 1, . . . , p.

Table A4.4.6 reflects a summary with all the cases analysed.

Table A4.4.6: Scenarios for disk domain.

Cases R hR hϕ TR p

(P1,a,C3) 12 R
145

2π
135 3 4

(P1,b,C2) 18 R
145

2π
135 5 4

(P1,c,C1) 25 R
145

2π
135 7 4

(P1,d,C1) 50 R
145

2π
135 15 4

(P1,e,C2) 100 R
145

2π
135 31 4

(P1,f,C3) 250 R
145

2π
135 79 4

(P2,a,C1) 12 R
145

2π
135 3 9

(P2,b,C2) 18 R
145

2π
135 5 9

(P2,c,C3) 25 R
145

2π
135 7 9

(P2,d,C3) 50 R
145

2π
135 15 9

(P2,e,C2) 100 R
145

2π
135 31 9

(P2,f,C1) 250 R
145

2π
135 79 9
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Figures A4.4.5–A4.4.6 respectively reflect the generation of a functional value of the response in the
cases (P1,c,C1) and (P1,f,C3).

Figure A4.4.5: Case (P1,c,C1). Simulated response with p = 4, R = 25 and β of type C1.

Figure A4.4.6: Case (P1,f,C3). Simulated response with p = 4, R = 250 and β of type C3.

The respective generalized least–squares functional estimates are displayed in Figures A4.4.7–A4.4.8.

230



Figure A4.4.7: Case (P1,c,C1). Estimated response with p = 4, R = 25 and β of type C1.

Figure A4.4.8: Case (P1,f,C3). Estimated response with p = 4, R = 250 and β of type C3.

The empirical functional mean quadratic errors (see equations (A4.23)–(A4.24)) are displayed in Table
A4.4.7, for the estimation of the functional parameter vectorβ, and in Table A4.4.8 for the estimation of the
response Y. It can be observed, as in the rectangular domain, that the order of magnitude of the empirical
functional mean quadratic errors associated with the estimation ofβ is of order 10−3, and for the estimation
of the response is 10−2. However, the number of terms considered is less than in the case of the rectangle;
i.e., a finite dimensional space with lower dimension than in the rectangle is required, according to criterion
(iii) reflected in Appendix A4.4. It can also be appreciated that the number of components of β does not
substantially affect the accuracy of the estimates.
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Table A4.4.7: EFMSEβ for disk domain.

EFMSEβ

(P1,a,C3) (P1,b,C2) (P1,c,C1)
7.500 (10)−4 7.500 (10)−4 7.400 (10)−4

(P1,d,C1) (P1,e,C2) (P1,f,C3)
7.500 (10)−4 7.600 (10)−4 7.500 (10)−4

(P2,a,C1) (P2,b,C2) (P2,c,C3)
7.000 (10)−4 7.100 (10)−4 7.100 (10)−4

(P2,d,C3) (P2,e,C2) (P2,f,C1)
7.900 (10)−4 8.000 (10)−4 8.000 (10)−4

Table A4.4.8: EFMSEY for disk domain.

EFMSEY

(P1,a,C3) (P1,b,C2) (P1,c,C1) (P1,d,C1) (P1,e,C2) (P1,f,C3)
0.048 0.048 0.048 0.048 0.048 0.048

(P2,a,C1) (P2,b,C2) (P2,c,C3) (P2,d,C3) (P2,e,C2) (P2,f,C1)
0.050 0.050 0.050 0.049 0.050 0.050

The statistics (A4.15) is now computed (see Table A4.4.9), as an empirical approximation of the rel-
ative magnitude between the explained functional variability and the residual variability, after fitting the
transformed Hilbert-valued fixed effect model (A4.13). It can be noticed that the values of S̃SR

S̃ST
are very

close to one in all the scenarios analysed. This fact induces large values of (A4.15) (see Table A4.4.9), since

F =
S̃SR

S̃SE
=

S̃SR/S̃ST

1− S̃SR/S̃ST
.

It can be observed, one time more, from criterion (iii), reflected in Appendix A4.4, that the boundary con-
ditions and the geometry of the domain allows in this case a more substantial dimension reduction than in
the rectangular domain case, since with lower truncation orders a better model fitting is obtained.
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Table A4.4.9: F statistics (A4.15) over the disk domain.

Cases (P1,a,C3) (P1,b,C2) (P1,c,C1)
F 1.100(102) 4.100(103) 1.200(105)

Cases (P1,d,C1) (P1,e,C2) (P1,f,C3)
F 3.900(106) 6.300(106) 4.200(106)

Cases (P2,a,C1) (P2,b,C2) (P2,c,C3)
F 2.200(103) 8.200(103) 7.600(107)

Cases (P2,d,C3) (P2,e,C2) (P2,f,C1)
F 2.500(107) 1.400(107) 8.500(107)

The statistics Th in (A4.20) is computed to contrast the significance of the parameter vector β in case
C1, with p = 4 components. Again, eight realizations of Gaussian random functions h are considered,
generated from a Gaussian random field ξ, solution, in the mean–square sense, of the following boundary
value problem on the disk:

(−∆)ξ(x) = ς(x), x = (x1, x2) ∈ D25 = {x ∈ R2; 0 < ∥x∥ < 25},
ξ(θ, 25) = 0, ∀θ ∈ [0, 2π]

where ς denotes a zero–mean Gaussian white noise on L2(D25); i.e., a zero–mean generalized Gaussian
process satisfying

∫
[0,2π]×[0,25]

f(φ, v)E {ς(θ, r)ς(φ, v)} dφdv = f(θ, r), (θ, r) ∈ [0, 2π]× [0, 25], f ∈ L2(D25).

Table A4.4.10 reflects the percentage of successes, for α = 0.05, and the averaged p–values over the
150 samples, generated with sizen = 150, of the functional response having parameter vectorβ of type C1

with p = 4 components, for TR = 7.

Table A4.4.10: Disk. Percentage of successes for α = 0.05, at the left–hand side, and averaged p–values
at the right–hand side, for each one of the eight realizations of the Gaussian function h ∈ L2(D25).

D % Success p

1 99.95% 1.672(10)−8

2 99.5% 9.746(10)−7

3 100% 0

4 99.9% 8.546(10)−8

5 97.45% 7.400(10)−7

6 100% 0

7 100% 8.775(10)−9

8 100% 0
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Table A4.4.10 again illustrates a good performance of the statisticsTh in (A4.20). Indeed, we can appre-
ciate a high percentage of successes, and very small p–values, very close to zero, that support the significance
of the functional parameter vector, considered in the generation of the data set analysed.

A4.4.3 Circular sector domain

In the circular sector

D3 = {(r cos (φ) , r sin (φ)) : 0 < ∥r∥ < R, 0 < φ < πθ}

of radiusR and angleπθ, the zero-mean Gaussian vector error term is generated from the matrix covariance
operatorRεε, whose functional entries are defined in equation (A4.22). The eigenvectors {ϕk, k ≥ 1}
of the Dirichlet negative Laplacian operator on the circular sector are considered (see equation (A4.39) in
the Supplementary Material in Appendix A4.7), arranged in decreasing order of the modulus magnitude of
their associated eigenvalues. Specifically, here,Rεε is defined in equation (A4.22), with for i = 1, . . . , n,
λki = λk(Rii) being given in equations (A4.8) and (A4.39).

As in the above examples, ν = 20 functional samples of size n = 200 are generated. The cases studied
are also summarized in terms of the values of the vector (Pi, u, Cj), i = 1, 2, u = a, b, c, d, e, f, and
j = 1, 2, 3,with the values of u having the same meaning as in the disk domain. Again, values ofPi provide
the number p of components of β; i.e., p = 4 if i = 1, and p = 9 if i = 2. The values C1, C2 and C3

respectively correspond to the following functions defining the components of β, whose projections are
given by:

βsk = 1 + (k − 1)s, k = 1, . . . , TR, s = 1, . . . , p (C1)

βsk =
1

R
e

s+ k
R

n + k cos

(
(−1)k 2π

R

k

)
, k = 1, . . . , TR, s = 1, . . . , p (C2)

βsk = cos

(
π
TR− k

k

)
cos

(
π
p− s

s

)
, k = 1, . . . , TR, s = 1, . . . , p (C3).

A summary of the cases analysed is given in Table A4.4.11.
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Table A4.4.11: Scenarios for circular sector domain.

Cases R hR hϕ TR θ p

(P1,a,C3) 12 R
145

2π
115 3 2

3 4

(P1,b,C2) 18 R
145

2π
115 5 2

3 4

(P1,c,C1) 25 R
145

2π
115 7 2

3 4

(P1,d,C1) 50 R
145

2π
115 15 2

3 4

(P1,e,C2) 100 R
145

2π
115 31 2

3 4

(P1,f,C3) 250 R
145

2π
115 79 2

3 4

(P2,a,C1) 12 R
145

2π
115 3 2

3 9

(P2,b,C2) 18 R
145

2π
115 5 2

3 9

(P2,c,C3) 25 R
145

2π
115 7 2

3 9

(P2,d,C3) 50 R
145

2π
115 15 2

3 9

(P2,e,C2) 100 R
145

2π
115 31 2

3 9

(P2,f,C1) 250 R
145

2π
115 79 2

3 9

Figures A4.4.9–A4.4.10 display the generation of a functional value of the response in the cases (P2,e,C2)
and (P1,f,C3), respectively.

Figure A4.4.9: Case (P2,e,C2). Simulated response with p = 9, R = 100 and β of type C2.
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Figure A4.4.10: Case (P1,f,C3). Simulated response with p = 4, R = 250 and β of type C3.

The functional estimates obtained from the finite–dimensional approximation of the generalized least–
squares estimator of β are now given in Figures A4.4.11–A4.4.12, for the cases (P2,e,C2) and (P1,f,C3),
respectively.

Figure A4.4.11: Case (P2,e,C2). Estimated response with p = 9, R = 100 and β of type C2.
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Figure A4.4.12: Case (P1,f,C3). Estimated response with p = 4, R = 250 and β of type C3.

As in the previous sections, the empirical functional mean quadratic errors, associated with the estima-
tion ofβ and Y, are computed from equations (A4.23)–(A4.24). They are shown in Table A4.4.12, forβ,
and in Table A4.4.13, for Y.

These empirical functional mean quadratic errors are very stable through the different cases considered,
and their order of magnitude is again 10−3 for the parameterβ, and 10−2 for the response. Here, the results
displayed also correspond to the projection into lower finite–dimensional spaces than in the case of the rect-
angle, according to the functional form of the eigenvectors (see truncation order criterion (iii) in Appendix
A4.4).

Table A4.4.12: EFMSEβ for the circular sector.

EFMSEβ

(P1,a,C3) (P1,b,C2) (P1,c,C1)
1.200 (10)−4 1.100 (10)−4 1.200 (10)−4

(P1,d,C1) (P1,e,C2) (P1,f,C3)
1.200 (10)−4 1.200 (10)−4 1.100 (10)−4

(P2,a,C1) (P2,b,C2) (P2,c,C3)
1.900 (10)−4 2.000 (10)−4 2.000 (10)−4

(P2,d,C3) (P2,e,C2) (P2,f,C1)
1.900 (10)−4 1.900 (10)−4 2.000 (10)−4
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Table A4.4.13: EFMSEY for the circular sector.

EFMSEY

(P1,a,C3) (P1,b,C2) (P1,c,C1)
8.770 (10)−3 8.810 (10)−3 8.820 (10)−3

(P1,d,C1) (P1,e,C2) (P1,f,C3)
8.820 (10)−3 8.820 (10)−3 8.810 (10)−3

(P2,a,C1) (P2,b,C2) (P2,c,C3)
9.630 (10)−3 9.670 (10)−3 9.670 (10)−3

(P2,d,C3) (P2,e,C2) (P2,f,C1)
9.670 (10)−3 9.680 (10)−3 9.660 (10)−3

Statistics (A4.15) is now computed. Its values are displayed in Table A4.4.14. Again, as in the disk, the
proportion of explained functional variability is very close to one leading to large values of statistics (A4.15),
as it can be observed in Table A4.4.14 for all the cases analysed.

Table A4.4.14: F statistics (A4.15) for the circular sector.

Cases (P1,a,C3) (P1,b,C2) (P1,c,C1) (P1,d,C1) (P1,e,C2) (P1,f,C3)
F 9.2(102) 3.1(103) 4.2(106) 4.8(108) 5.8(106)) 7.3(108)

Cases (P2,a,C1) (P2,b,C2) (P2,c,C3) (P2,d,C3) (P2,e,C2) (P2,f,C1)
F 1.8(103) 4.1(103) 2.6(107) 3.1(109) 6.8(106) 1.8(109)

The statisticsTh in (A4.20) is computed to contrast the significance of the parameter vectorβ in case C1

with p = 4 functional components. Eight realizations of a Gaussian random functionh are considered from
a Gaussian random field ξ, solution, in the mean-square sense, of the following boundary value problem on
the circular sector

(−∆)ξ(x) = ς(x), x = (r cos (φ) , r sin (φ)) , 0 < ∥r∥ < R, 0 < φ < πθ,

ξ(φ, 25) = 0, φ ∈ [0, πθ],

where θ = 2/3, ς denotes a zero–mean Gaussian white noise on the circular sector such that∫
[0,πθ]×[0,25]

f(φ, v)E {ς(γ, r)ς(φ, v)} dφdv = f(γ, r), (γ, r) ∈ [0, πθ]× [0, 25], f ∈ L2(CS),

with L2(CS) denoting the space of square–integrable functions on the circular sector. Table A4.4.15 re-
flects the percentage of successes, for α = 0.05, and the averaged p–values over the 150 samples, with size
n = 150, of the response, having C1–type functional parameter vectorβ with p = 4 components, consid-
ering TR = 7.
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Table A4.4.15: Circular Sector. Percentage of successes for α = 0.05, at the left–hand side, and averaged
p–values at the right–hand side, for each one of the eight realizations of the Gaussian function h ∈
L2(CS).

D % Success p

1 97.5% 6.504(10)−6

2 100% 0

3 100% 3.600(10)−8

4 100% 0

5 98% 2.006(10)−6

6 99.5% 9.807(10)−8

7 100% 0

8 99.5% 4.111(10)−7

Table A4.4.15 again confirms the good performance of the test statistics Th, showing a high percentage
of successes, and very small magnitudes for the averaged p–value (almost zero values), according to the
significance of the parameter vectorβ considered in the generation of the analysed functional data set.

A4.5 Functional statistical analysis of fMRI data

In this section, we compare the results obtained from the application of the MatLab function fmrilm.m
(see Liao et al. [2012] and Worsley et al. [2002]) from fmristat.m function set (available at http://www.
math.mcgill.ca/keith/fmristat), with those ones provided by the implementation of our proposed
functional statistical methodology, based on the Hilbert-valued fixed effect models with ARH(1) error term
above introduced. The fMRI data set analysed is also freely available in AFNI format at http://www.
math.mcgill.ca/keith/fmristat/. (AFNI Matlab toolbox can be applied to read such a data set). In
the next section, structural information about such fMRI data is provided (see BrikInfo.mMatlab function).

The first step in the statistical analysis of fMRI data is to modeling the data response to an external stim-
ulus. Specifically, at each voxel, denote by x(t) the (noise-free) fMRI response at time t, and by s(t) the
external stimulus at that time. It is well–known that the corresponding fMRI response is not instantaneous,
suffering a blurring and a delay of the peak response by about 6s (see, for example, Liao et al. [2012]). This
fact is usually modelled by assuming that the fMRI response depends on the external stimulus by convolu-
tion with a hemodynamic response functionh(t) (which is usually assumed to be independent of the voxel),
as follows:

x(t) =

∫ ∞

0

h(u)s(t− u)du. (A4.33)

Several models have been proposed in the literature for the hemodynamic response function (hrf). For
example, the gamma function (see Lange and Zeger [1997]), or the difference of two gamma functions, to
model the slight intensity dip after the response has fallen back to zero (see Friston et al. [1998]).

The effects (xi,1, . . . , xi,p) of p different types of stimuli on data, in scan i, is combined in terms of
an additive model with different multiplicative coefficients (β1, . . . , βp) that vary from voxel to voxel. The
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combined fMRI response is then modeled as the linear model (see Friston et al. [1995])

xi,1β1(v) + · · ·+ xi,pβp(v),

for each voxel v.
An important drift over time can be observed in fMRI time series data in some voxels. Such a drift is

usually linear, or a more general slow variation function. In the first case, i.e., for a linear function

xi,k+1βk+1(v) + · · ·+ xi,m(v)βm(v),

when the drift is not removed, it can be confounded with the fMRI response. Otherwise, it can be added to
the estimate of the random noise ε, which, in the simplest case is assumed to be an AR(1) process at each
voxel. In that case, the linear model fitted to the observed fMRI data is usually given by

Yi(v) = xi,1β1(v) + · · ·+ xi,pβp(v) + xi,k+1βk+1(v) + · · ·+ xi,mβm(v) + εi(v), i = 1, . . . , n,
(A4.34)

for each one of the voxels v, in the real–valued approach presented in Worsley et al. [2002]. In (A4.34),

εi(v) = ρ(v)εi−1(v) + ξi(v), |ρ(v)| < 1,

where {ξi(v), i = 1, . . . , n} are n random components of Gaussian white noise in time, for each voxel v.
This temporal correlation structure for the noise has sense, under the assumption that the scans are equally
spaced in time, and that the error from the previous scan is combined with fresh noise to produce the error
for the current scan. In the presented Hilbert–valued approach, a similar reasoning can be applied to arrive
to the fixed effect model with ARH(1) error term, introduced in Appendix A4.2. This model allows the rep-
resentation of fMRI data in a functional spatially continuous form. Specifically, for the scan i, a continuous
spatial variation is assumed underlying to the values of the noise across the voxels, reflected in the functional
value of the ARH(1) process, representing the error term. In the same way, the H–valued components of
the parameter vector β(·) provide a continuous model to represent spatial variation over the voxels of the
multiplicative coefficients β1(·), . . . , βp(·), independently of time. Since the fMRI response is subsampled
at the n scan acquisition times t1, . . . , tn, the fixed effect design matrix X, constituted by the values of
the fMRI response (A4.33) at such times, under the p different types of stimuli considered, has dimension
n× p.Note that in (A4.33) x is assumed to be independent of the voxel, according to the definition of the
hrf.

A4.5.1 Description of the data set and the fixed effect design matrix

Brain scan measurements are represented on a set of 64 × 64 × 16 voxels. Each one of such voxels
represents a cube of 3.75×3.75×7mm.At each one of the 16 depth levels or slices {Si, i = 1, . . . , 16},
the brain is scanned in 68 frames, {Frh, h = 1, . . . , 68}. Equivalently, for i = 1, . . . , 16, on the slice Si,
a 64× 64 rectangular grid is considered, where measurements at each one of the 68 frames are collected.

We restrict our attention to the case p = 2, where two type of events are considered, respectively rep-
resenting scans hot stimulus (with a height hh) and scans warm stimulus (with a height hw). The default
parameters, chosen by Glover [1999], to generate the hrf as the difference of two gamma densities is the row
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vector r = [5.4, 5.2, 10.8, 7.35, 0.35], where the first and third parameters represent the time to peak of
the first and second gamma densities (Γ1 andΓ2), respectively; the second and fourth parameters represent
the approximate full width at half maximum (FWHM) of the first and second gamma densities, respectively;
and the fifth parameter (called also DIP ) denotes the coefficient of the second gamma density, for more
details, see Glover [1999], about modelling the hrf as the difference of two gamma density functions, in the
following way:

hrf =
Γ1

max(Γ1)
−DIP

(
Γ2

max(Γ2)

)
.

ConsideringTRt = 5 seconds as the temporal step between each frameFrh, h = 1, . . . , 68, in which
all slices are scanned, frame times will beFrtimes = (0, 5, 10, . . . , 330, 335) (see Figure A4.5.1). Remark
that, for any of the 68 scans, separated by TRt = 5 seconds, keeping in mind that the first 4 frames are
removed, 16 slices {Si, i = 1, . . . , 16}, are interleaved every 0.3125 seconds, approximately.

FigureA4.5.1: hrf model in Glover [1999] (without convoluting) obtained by fmridesign.m Matlab function,
for slices Si, with i = 1 (top) and i = 10 (bottom), until frame time Frtimes = 150 (i.e., the Glover’s
hrf continues to be zero).

The events matrixE, which will be convoluted with the hrf, is a matrix whose rows are the events, and
whose columns are the identifier of the event type, the starting event time, the duration of the event, and the
height of the response for the event, respectively. In our example, we have considered a block design of 4
scans rest, 4 scans hot stimulus, 4 scans rest, 4 scans warm stimulus, repeating 4 times this block with 4 last
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scans rest (68 scans total). As noted before, we remove the first 4 frames. The hot event is identified by 1
and the warm event by 2, such that hh = 0.5 and hw = 1. Event times, for hot and warm stimulus, will be
[20, 60, . . . , 260, 300], since there are 8 frames between the beginning of events (4 frames for the previous
event and 4 frames rest). Then, our events matrixE considered is

E =



1 20 5 0.5
2 60 5 1
1 100 5 0.5
2 140 5 1
1 180 5 0.5
2 220 5 1
1 260 5 0.5
2 300 5 1


. (A4.35)

Convolution of matrixE, in (A4.35), with the hrf leads to the set of real–valued 64× 2 design matrices

{X i, i = 1, . . . , 16} , X i ∈ R64×2,

implemented by fmridesgin.m Matlab function (see Figure A4.5.2).

Figure A4.5.2: Design matrix Xi for the first 40 frames, and slices Si, with i = 1 (top) and i = 10
(bottom), obtained by fmridesign.m Matlab function through the convolution of our events matrix with
the hrf model in Glover [1999].
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A4.5.2 Hilbert–valued fixed effect model fitting to FMRI data. A comparative study

The estimation results obtained with the implementation of the classical and Hilbert–valued linear model
methodology are now compared. Specifically, in the classical case, from the linear model approach presented
in Worsley et al. [2002], we consider a fixed–effect model fitting, in the case where the error term is an AR(1)
process, ignoring spatial correlation across the voxels. In particular, the MatLab function fmrilm.m is imple-
mented to fit model (A4.34) to a single run of fMRI data, allowing for spatially varying temporal correlated
errors. The parameters of the spatial varying AR(1) models (from voxel to voxel) are estimated from the
sample autocorrelation of the residuals, obtained after estimation of the fixed effect parameter by ordinary
least–squares, ignoring temporal correlation of the errors, at each voxel. This procedure could be iterated.
That is, the estimated autocorrelation coefficient can be used to pre–whitening the data at each voxel. Hence,
the fixed effect parameter is estimated by ordinary least-squares, from such data. This iterative estimation
procedure can be repeated several times. However, as pointed out in Worsley et al. [2002], such iterations do
not lead to a substantial improvement in practice. A variance reduction technique is then applied in Worsley
et al. [2002] to the estimated autocorrelation coefficient (reduced bias sample autocorrelation), consisting
of spatial smoothing of the sample autocorrelations. This technique reduces variability, although slightly
increases the bias.

In this subsection, we also implement the approach introduced in Appendix A4.2, from the fMRI data
set described in Appendix A4.5.1. As commented before, our approach presents the advantage of providing
a continuous spatial description of the variation of the fixed effect parameters, as well as of the parameters
characterizing the temporal correlated error term, with autoregressive dynamics. Furthermore, the spatial
correlations are also incorporated to our functional statistical analysis, computed from the spatial autoco-
variance and cross-covariance kernels, respectively defining the operators R0 and R1, characterizing the
functional dependence structure of the ARH(1) error term.

Functional fixed effect model fitting is independently performed at each slice Si, for i = 1, . . . , 16.
Specifically, for i = 1, . . . , 16, as commented before, a real-valued n × p, with p = 2, fixed effect design
matrixXi is considered (see Appendix A4.5.1). The effects of the two different events studied are combined
by the vector of functional fixed effect parameters

βi(·) = [β1,i(·), β2,i(·)]T ∈ H2.

Here,H2 is the Hilbert space of 2–dimensional vector functions, whose components are square–integrable
over the spatial rectangular grid considered at each slice. Furthermore, for i = 1, . . . , 16,

Yi(·) = [Y1,i(·), . . . , Yn,i(·)]T

is theHn–valued Gaussian fMRI data response, with n representing the number of frames (n = 64, since
the first 4 frames are removed because they do not represent steady–state images). In the computation of
the generalized least–squares estimate of β, the empirical matrices

{
Λ̂k, k = 1, . . . , TR

}
are computed

from the empirical covariance operators (A4.9), where TR is selected according to the required conditions
specified, in relation to the sample size n, in Bosq [2000] (see, in particular, [Bosq, 2000, pp. 101–102 and
pp. 116–117], and Remark A4.2.3).
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In the subsequent developments, in the results obtained by applying the Hilbert–valued multivariate
fixed effect approach, we will distinguish between cases A and B, respectively corresponding to the projec-
tion into two and five empirical eigenvectors. For each one of the 16 slices, the temporal and spatial aver-
aged empirical quadratic errors, associated with the estimates of the response, computed with the fmrilm.m
MatLab function, and with the proposed multivariate Hilbert–valued mixed effect approach, respectively
denoted asEFMSEY fMRI

i
andEFMSEY H

i
, are displayed in Tables A4.5.1–A4.5.2.

Table A4.5.1: EFMSE
Y fMRI

i
and EFMSEY H

i
for case A.

Slices Si EFMSE
Y fMRI

i
EFMSEY H

i

1 2.417(10)−3 3.492(10)−3

2 3.051(10)−3 3.119(10)−3

3 4.293(10)−3 5.523(10)−3

4 6.666(10)−3 7.690(10)−3

5 8.986(10)−3 9.961(10)−3

6 8.462(10)−3 9.434(10)−3

7 1.108(10)−2 1.920(10)−2

8 1.720(10)−2 2.720(10)−2

9 1.499(10)−2 1.914(10)−2

10 1.036(10)−2 1.851(10)−2

11 1.308(10)−2 1.634(10)−2

12 1.302(10)−2 1.300(10)−2

13 7.850(10)−3 7.939(10)−3

14 6.640(10)−3 6.730(10)−3

15 3.511(10)−3 2.832(10)−3

16 2.771(10)−3 3.540(10)−3
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Table A4.5.2: EFMSE
Y fMRI

i
and EFMSEY H

i
for case B.

Slices Si EFMSE
Y fMRI

i
EFMSEY H

i

1 2.417(10)−3 2.592(10)−3

2 3.051(10)−3 3.119(10)−3

3 4.293(10)−3 4.733(10)−3

4 6.666(10)−3 7.671(10)−3

5 8.986(10)−3 9.065(10)−3

6 8.462(10)−3 8.435(10)−3

7 1.108(10)−2 1.120(10)−2

8 1.720(10)−2 1.919(10)−2

9 1.499(10)−2 1.524(10)−2

10 1.036(10)−2 1.040(10)−2

11 1.308(10)−2 1.481(10)−2

12 1.302(10)−2 1.299(10)−2

13 7.849(10)−3 7.929(10)−3

14 6.640(10)−3 6.719(10)−3

15 3.511(10)−3 2.829(10)−3

16 2.771(10)−3 3.540(10)−3

It can be observed, in Tables A4.5.1–A4.5.2, that the performance of the two approaches is very similar.
However, the advantage of the presented approach relies on the important dimension reduction it provides,
since, as commented before, we have considered the truncations orders TR = 2 (Case A) and TR = 5
(Case B). Note that, for each slice, the parameter vector has dimension 2 × ×(64 × 64), in the model
fitted by fmrilm.m Matlab function. While the presented approach fits the functional projected model, that,
for the the cases A and B studied, is defined in terms of a parameter vector β with dimension 2 × 2 and
2× 5, respectively. Furthermore, the iterative estimation method implemented in fmrilm.m requires several
steps, repeated at each one of the 64×64 voxels in the 16 slices (data pre–whitening, ordinary least-squares
estimation of β, and AR(1) correlation coefficient estimation iterations, jointly with the spatial smoothing
of the temporal correlation - reduced bias - parameter estimates).

For the slices 1, 5, 10 and 15, the temporal averaged (frames 5–68) estimated values of the response,
applying fmrilm.m MatLab function, and the fixed effect model with ARH(1) error term, in cases A and B,
are respectively displayed in Figures A4.5.3–A4.5.5. The corresponding empirical time-averaged quadratic
errors are displayed in Figures A4.5.6–A4.5.8, respectively.
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FigureA4.5.3: Averaged in time (frames 5–68) estimated response values for slices 1, 5, 10 and 15, obtained
by applying fmrilm.m MatLab function.
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FigureA4.5.4: Averaged in time (frames 5–68) estimated response values for slices 1, 5, 10 and 15, obtained
by applying the fixed effect approach with ARH(1) error term, for case A.
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FigureA4.5.5: Averaged in time (frames 5–68) estimated response values for slices 1, 5, 10 and 15, obtained
by applying the fixed effect approach with ARH(1) error term, for case B.
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Figure A4.5.6: Averaged in time (frames 5–68) empirical errors for slices 1, 5, 10 and 15, obtained by
applying fmrilm.m MatLab function.
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Figure A4.5.7: Averaged in time (frames 5–68) empirical errors for slices 1, 5, 10 and 15, obtained by
applying the fixed effect approach with ARH(1) error term, for case A.
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Figure A4.5.8: Averaged in time (frames 5–68) empirical errors for slices 1, 5, 10 and 15, obtained by
applying the fixed effect approach with ARH(1) error term, for case B.

A4.5.3 Significance test

We are interested in contrast the significance of the spatial varying parameter vector β combining the
effects of the two stimulus considered on the overall brain, in its real-valued, and H2-valued version. The
F statistic in the MatLab function fmrilm.m (fMRI linear model), computed, as before, from a single run
of fMRI data, leads to the results reflected in Table A4.5.3, on the percentage of brain voxels, where the
real–valued fixed effect model with AR(1) term is significative, for each one of the 16 slices considered.
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Table A4.5.3: Percentage of brain voxels per slice, where the real-valued fixed effect model with AR(1)
error term, fitted by fmrilm.m MatLab function, is significative.

S % voxels with rejection of H0

1 99.927%

2 99.927%

3 99.707%

4 99.902%

5 99.805%

6 99.951%

7 99.927%

8 99.976%

9 99.805%

10 99.951%

11 99.951%

12 99.902%

13 99.878%

14 99.951%

15 99.951%

16 100%

As described in Appendix A4.3, for each slice, i.e., for i = 1, . . . , 16, the value of the conditional chi–
squared test statistics Th, in equation (A4.20), is computed, from four realizations of a Gaussian random
function h, generated from a Gaussian random field ξ, satisfying equation (A4.32) on the rectangle con-
taining each brain slice. As before, the functional response sample size at each slice is 64, since the first four
frames are discarded. It can be observed, in the numerical results displayed in Table A4.5.4, for TR = 16,
and in Table A4.5.5, forTR = 4, that the null hypothesis is rejected, in most of the random directions in all
the brain slices; i.e., the functional fixed effect model with ARH(1) error term is significative for α = 0.05.
Note that a very few p–values are slightly larger than α = 0.05, with very small difference, that could be
produced by the numerical errors accumulated, due to the presence of small values to be inverted. Thus, we
can conclude the suitability of our approach, to combine the effects of the scans hot stimulus, and the scans
warm stimulus, in a functional spatially continuous framework.
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TableA4.5.4: p-values for Th computed at the 16 slices, considering four random directions, for TR = 16.

S D1 D2 D3 D4

1 0 0 0.082 0.023

2 0.590(10)−2 0 0 0

3 0.018 0.066 0.049 0.030

4 0 0 0 0.170(10)−10

5 0 0.026 0 0

6 0 0 0 0

7 0.710(10)−7 0 0 0

8 0 0.006 0 0

9 0.049 0 0 0.023

10 0.390(10)−7 0.031 0 0

11 0.004 0.006 0.660(10)−6 0.052

12 0.046 0 0 0.034

13 0.340(10)−7 0.028 0 0.440(10)−3

14 0 0.180(10)−6 0.021 0.050

15 0 0.140(10)−7 0.044 0.052

16 0.110(10)−4 0.230(10)−7 0 0

Table A4.5.5: p-values for Th computed at the 16 slices, considering four random directions, for TR = 4.

S D1 D2 D3 D4

1 0 0.051 0.071 0.011

2 0.880(10)−4 0 0 0

3 0.067 0.034 0 0.037

4 0 0.250(10)−4 0.110(10)−4 0.016

5 0.370(10)−6 0 0.280(10)−6 0

6 0.001 0 0 0.220(10)−4

7 0.064 0.034 0.007 0.044

8 0.072 0.079 0.035 0

9 0.220(10)−5 0.470(10)−4 0.004 0.220(10)−9

10 0 0.120(10)−3 0.370(10)−4 0.970(10)−7

11 0.081 0.058 0 0

12 0.870(10)−4 0 0 0.036

13 0.760(10)−3 0 0 0.370(10)−3

14 0.210(10)−6 0 0 0.037

15 0 0.650(10)−4 0.032 0

16 0.540(10)−6 0 0 0.520(10)−3

Comparing results in Tables A4.5.3–A4.5.5, we can conclude that both methodologies, the one pre-
sented in Worsley et al. [2002], and the functional approach introduced here, lead to similar results regarding
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the significance of the models they propose, respectively based on spatial varying real–valued multiplicative
coefficients with AR(1) error term, and Hilbert–valued coefficients with ARH(1) error term.

A4.6 Conclusions

As shown in the simulation study, the boundary conditions affect the decay velocity at the boundary of
the covariance kernels, defining the functional entries of the matrix covariance operator of the error term.
Thus, the dependence range of the error components is directly affected by the boundary conditions. A bet-
ter performance of the generalized least–squares estimator of the parameter vector β is observed, when a
fast continuous decay is displayed by the error covariance kernels close to the boundary, as it is observed
in the circular domains. Furthermore, in the simulation study undertaken, and in the real–data problem
addressed, a good performance of the computed generalized least–squares estimator, and of the test statis-
tics is observed for low truncation orders. Thus, an important dimension reduction is achieved with the
presented approach. Summarizing, the proposed approach allows the incorporation of temporal and spatial
correlations in the analysis, with an important dimension reduction.

The derivation of similar results under alternative boundary conditions like Neumann and Robin bound-
ary conditions constitutes an open research problem (see, for example, Grebenkov and Nguyen [2013]).
Another important research problem is to address the same analysis under a slow decay of the error covari-
ance kernels at the boundary (see, for example, Frías et al. [2017]; Jiang [2012, 2016]; Tong [2011], beyond
the Gaussian context).

A4.7 SupplementaryMaterial

The eigenvectors and eigenvalues of the Dirichlet negative Laplacian operator on the regular domains
defined by the rectangle, disk and circular sector are described here (see, for example, Grebenkov and Nguyen
[2013]). It is well–known that the negative Laplacian operator (−∆D) on a regular bounded open domain
D ⊂ R2,with Dirichlet boundary conditions, is given by

−∆D(f)(x1, x2) = − ∂2

∂x21
f(x1, x2)−

∂2

∂x22
f(x1, x2), f(x1, x2) = 0, (x1, x2) ∈ ∂D, D ⊆ R2,

where ∂D is the boundary of D. In the subsequent development, we will denote by {ϕk, k ≥ 1} and
{λk(−∆D), k ≥ 1} the respective eigenvectors and eigenvalues of (−∆D) , that satisfy

−∆Dϕk (x) = λk(−∆D)ϕk (x)
(
x ∈ D ⊆ R2

)
,

ϕk (x) = 0 (x ∈ ∂D) , ∀k ≥ 1,
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forD being one of the following three domains:

D1 =
2∏
i=1

[ai, bi] , D2 =
{
x ∈ R2 : R0 < ∥x∥ < R

}
,

and
D3 =

{
x ∈ R2 : R0 < ∥x∥ < R, and 0 < φ < πθ

}
.

A4.7.1 Eigenelements of Dirichlet negative Laplacian operator on rectangles

Let us first consider domain

D1 =
2∏
i=1

[ai, bi] .

The eigenvectors{ϕk, k ∈ N2
∗} and eigenvalues{λk(−∆D1), k ∈ N2

∗}of−∆D1 are given by (see Grebenkov
and Nguyen [2013]):

ϕk (x) = ϕ
(1)
k1

(x1)ϕ
(2)
k2

(x2) , λk = λ
(1)
k1

+ λ
(2)
k2
,

ϕ
(i)
ki

(xi) = sin

(
πkixi
li

)
, xi ∈ [ai, bi] , i = 1, 2,

λ
(i)
ki

=
π2k2i
l2i

, ki ≥ 1, i = 1, 2,

(A4.36)

where li = bi − ai, for i = 1, 2.

A4.7.2 Eigenelements of Dirichlet negative Laplacian operator on disks

In general, for the circular annulus

D̃2 =
{
x ∈ R2 : R0 < ∥x∥ < R

}
,

its rotation symmetry allows us to define −∆D̃2
in polar coordinates as

−∆D̃2
= − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂φ2
, x1 = r cosφ, x2 = r sinφ.

The application of variable separation method then leads to the following explicit formula of its eigen-
functions (see, for example, Grebenkov and Nguyen [2013])

ϕkhl (r, φ) = [Jk (αkhr/R) + ckhYk (αkhr/R)]× Ck (l) , (A4.37)
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with
Ck(l) =

{
cos (kφ) l=1,
sin (kφ) l=2 (k ̸= 0) ,

where {Jk (z)} and {Yk (z)} are the Bessel functions of order k of first and second kind, respectively,

{λkh
(
−∆D̃2

)
= α2

kh/R
2}

are the corresponding eigenvalues, and the sets {αk,h, k ≥ 1, h = 1, . . . ,M(k)} and
{ck,h, k ≥ 1, h = 1, . . . ,M(k)} are defined from the boundary conditions at r = R and r = R0.

If we focus on domainD2, the disk, i.e.,R0 = 0, the coefficients {ck,h, k ≥ 1, h = 1, . . . ,M(k)} are
set to 0.The eigenfunctions then adopt the following expression:

ϕkhl (r, φ) = Jk (αkhr/R)Ck(l), l = 1, 2,

(A4.38)

with eigenvalues

λkh (−∆D2) =
α2
kh

R2
, k ≥ 1, h = 1, . . . ,M(k),

where{αk,h, h = 1, . . . ,M(k)} are theM(k)positive roots of the Bessel functionJk (z)of orderk.Note
that we can also consider truncation at parameterM(k) for k ≥ 1, since this parameter increases with the
increasing of the radiusR.

A4.7.3 Eigenelements of Dirichlet negative Laplacian operator on circular sectors

Lastly, we consider domainD3, the circular sector of radiusR and angle 0 < φ < πθ.The eigenvectors
and eigenvalues are given by the following expression (see, for example, Grebenkov and Nguyen [2013]):

ϕkh (r, φ) = Jk/θ (αkhr/R) sin (kφ/θ) , r ∈ [0, R] ,

λkh (−∆D3) =
α2
kh

R2
, k ≥ 1, h = 1, . . . ,M(k),

(A4.39)

withM(k) and {αk,h, k ≥ 1, h = 1, . . . ,M(k)} being given as in the previous section.

A4.7.4 Asymptotic behavior of eigenvalues

A4.7.4.1 The rectangle

The functional data sets generated in Appendix A4.4 must have a covariance matrix operator with func-
tional entries (operators) in the trace class. We then apply the results in Widom [1963] to study the asymp-
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totic order of eigenvalues of the integral equation∫
R2

V 1/2(t)lεi(t− s)V 1/2(s)f(s)ds = λf(t).

In our case, V is the indicator function on the rectangle, i.e., on domain D1, and lεi is the covariance
kernel defining the square root

R1/2
εiεi

= fi(−∆D1) = (−∆D1)
−(d−γi), γi ∈ (0, d/2),

of the autocovariance operator of the Hilbert-valued error component {εi, i = 1, . . . , n} ,with

Rεiεi = R1/2
εiεi
R1/2
εiεi
.

Note that with the choice made of functionsV and {lεi , i = 1, . . . , n} , the conditions assumed in Widom
[1963] are satisfied. In particular, the following asymptotic holds:

λk(R
1/2
εiεi

) = O(k−2(d−γi)/d), k −→ ∞, i = 1, . . . , n,

(see [Widom, 1963, p. 279, Eq. (2)]). Also, in general, the eigenvalues of the Dirichlet negative Laplacian
operator on a regular bounded open domainD satisfy

γk(−∆D) ∼ 4π

(
Γ
(
1 + d

2

))2/d
|D|2/d

k2/d, k −→ ∞.

A4.7.4.2 Asymptotic behavior of zeros of Bessel functions.

As before, Jk (z) denotes the Bessel function of the first kind of order k. Let {jk,h, h = 1, . . . ,M(k)}
be its M(k) roots. In Elbert [2001]; Olver [1951, 1952], it is shown that, for a fixed h and large k, the
Olver’s expansion holds

jkh ≃ k + δhk
1/3 +O(k−1/3), k → ∞.

On the other hand, for fixed k and large h, the McMahon’s expansion also is satisfied (see, for example,
Watson [1966])

jkh ≃ π (h+ k/2− 1/4) +O(h−1), h→ ∞.

These results will be applied in Appendix A4.4, in the definition of the eigenvalues of the covariance
operators {Rεiεi , i = 1, . . . , n} , on the disk and circular sector, to ensure their rapid decay to zero, char-
acterizing the trace operator class.
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ABSTRACT

A special class of standardGaussian autoregressiveHilbertian processes of order one (GaussianARH(1) processes),
with bounded linear autocorrelation operator, which does not satisfy the usual Hilbert–Schmidt assumption, is
considered. To compensate the slow decay of the diagonal coefficients of the autocorrelation operator, a faster decay
velocity of the eigenvalues of the trace autocovariance operator of the innovation process is assumed. As usual, the
eigenvectors of the autocovariance operator of the ARH(1) process are considered for projection, since, here, they are
assumed to be known. Diagonal componentwise classical and Bayesian estimation of the autocorrelation operator
is studied for prediction. The asymptotic efficiency and equivalence of both estimators is proved, as well as of their
associated componentwiseARH(1)plug–inpredictors. A simulation study is undertaken to illustrate the theoretical
results derived.

A5.1 Introduction

Functional time series theory plays a key role in the analysis of high-dimensional data (see, for exam-
ple, Aue et al. [2015]; Bosq [2000]; Bosq and Blanke [2007]). Inference for stochastic processes can also
be addressed from this framework (see Álvarez-Liébana et al. [2016] in relation to functional prediction of
the Ornstein–Uhlenbeck process, in an ARH(1) process framework). Bosq [2000] addresses the problem
of infinite–dimensional parameter estimation and prediction of ARH(1) processes, in the cases of known
and unknown eigenvectors of the autocovariance operator. Alternative projection methodologies have been
adopted, for example, in Antoniadis and Sapatinas [2003], in terms of wavelet bases, and Besse and Cardot
[1996], in terms of spline bases. The book by Bosq and Blanke [2007] provides a general overview on
statistical prediction, including Bayesian predictors, inference by projection and kernel methods, empiri-
cal density estimation, and linear processes in high–dimensional spaces (see also Blanke and Bosq [2015]
on Bayesian prediction for stochastic processes). Recently, Bosq and Ruiz-Medina [2014] have derived
new results on asymptotic efficiency and equivalence of classical and Bayes predictors for l2–valued Pois-
son process, where, as usual, l2 denotes the Hilbert space of square summable sequences. Classical and
Bayesian componentwise parameter estimators of the mean function and autocovariance operator, charac-
terizing Gaussian measures in Hilbert spaces, are also compared in terms of their asymptotic efficiency, in
that paper.

We first recall that the class of processes studied here could be of interest in applications, for instance,
in the context of anomalous physical diffusion processes (see, for example, Gorenflo and Mainardi [2003];
Meerschaert et al. [2002]; Metzler and Klafter [2004], and the references therein). An interesting exam-
ple of our framework corresponds to the case of spatial fractal diffusion operator, and regular innovations.
Specifically, the class of standard Gaussian ARH(1) processes studied have a bounded linear autocorrela-
tion operator, admitting a weak–sense diagonal spectral representation, in terms of the eigenvectors of the
autocovariance operator. The sequence of diagonal coefficients, in such a spectral representation, displays
an accumulation point at one. The singularity of the autocorrelation kernel is compensated by the regularity
of the autocovariance kernel of the innovation process. Namely, the key assumption here is the summability
of the quotient between the eigenvalues of the autocovariance operator of the innovation process and of
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the ARH(1) process. Under suitable conditions, the asymptotic efficiency and equivalence of the studied
diagonal componentwise classical and Bayesian estimators of the autocorrelation operator are derived (see
Theorem A5.4.1 below). Under the same setting of conditions, the asymptotic efficiency and equivalence
of the corresponding classical and Bayesian ARH(1) plug–in predictors are proved as well (see Theorem
A5.4.2 below). Although both theorems only refer to the case of known eigenvectors of the autocovari-
ance operator, as illustrated in the simulation study undertaken in Álvarez-Liébana et al. [2017] (see also
Álvarez-Liébana [2017]; Ruiz-Medina and Álvarez-Liébana [2018a]), a similar performance is obtained for
the case of unknown eigenvectors, in comparison with other componentwise, kernel–based, wavelet-based
penalized and nonparametric approaches adopted in the current literature (see Antoniadis and Sapatinas
[2003]; Besse and Cardot [1996]; Bosq [2000]; Guillas [2001]; Mas [1999]).

Note that, for θ being the unknown parameter, in order to compute E {θ|X1, . . . , Xn} , with
{X1, . . . , Xn} denoting the functional sample, we suppose that

θj⊥{Xi,j′ , i ≥ 1, j′ ̸= j} ,

which leads to

⟨E {θ|X1, . . . , Xn} , vj⟩H = E {θj|X1, . . . , Xn} = E {θj|X1,j, . . . , Xn,j} .

Here, for each j ≥ 1, θj = ⟨θ, vj⟩H , andXi,j = ⟨Xi, vj⟩H , for each i = 1, . . . , n, with ⟨·, ·⟩H being
the inner product in the real separable Hilbert space H . Note that {vj, j ≥ 1} denotes an orthonormal
basis of H, diagonalizing the common autocovariance operator of (X1, . . . , Xn) . We can then perform
an independent computation of the respective posterior distributions of the projections {θj, j ≥ 1} , of
parameter θ,with respect to the orthonormal basis {vj, j ≥ 1} ofH.

Finally, some numerical examples are considered to illustrate the results derived on asymptotic efficiency
and equivalence of moment–based classical and Beta–prior–based Bayes diagonal componentwise param-
eter estimators, and the associated ARH(1) plug–in predictors.

A5.2 Preliminaries

The preliminary definitions and results needed in the subsequent development are introduced in this
section. We first refer to the usual class of standard ARH(1) processes introduced in Bosq [2000].

Definition A5.2.1 LetH be a real separable Hilbert space. A sequence Y = {Yn, n ∈ Z} ofH–valued ran-
dom variables on a basic probability space (Ω,A,P) is called an autoregressive Hilbertian process of order one,
associated with (µ, ε, ρ), if it is stationary and satisfies

Xn = Yn − µ = ρ(Yn−1 − µ) + εn = ρ(Xn−1) + εn, n ∈ Z, (A5.1)

where ε = {εn, n ∈ Z} is a Hilbert–valued white noise in the strong sense (i.e., a zero–mean stationary sequence
of independentH−valued random variables withE {∥εn∥2H} = σ2 < ∞, for every n ∈ Z), and ρ ∈ L(H),
withL(H) being the space of linear bounded operators onH. For each n ∈ Z, εn andXn−1 are assumed to be
uncorrelated.
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If there exists a positive j0 ≥ 1 such that ∥ρj0∥L(H) < 1, then, the ARH(1) process in (A5.1) is stan-
dard, and there exists a unique stationary solution to equation (A5.1) admitting a MAH(∞) representation
(see [Bosq, 2000, Theorem 3.1, p. 74]).

The autocovariance and cross–covariance operators are given, for each n ∈ Z, by

C = E {Xn ⊗Xn} = E {X0 ⊗X0} , D = E {Xn ⊗Xn+1} = E {X0 ⊗X1} , (A5.2)

where, for f, g ∈ H,
f ⊗ g(h) = f ⟨g, h⟩H , ∀h ∈ H,

defines a Hilbert–Schmidt operator onH.The operatorC is assumed to be in the trace class. In particular,

E
{
∥Xn∥2H

}
<∞, n ∈ Z.

It is well-known that, from equations (A5.1)–(A5.2), for allh ∈ H,D(h) = ρC(h) (see, for example, Bosq
[2000]). However, sinceC is a nuclear or trace operator, its inverse operator is an unbounded operator inH.
Different methodologies have been adopted to overcome this problem in the current literature on ARH(1)
processes. In particular, here, we consider the case whereC(H) = H, under Assumption A2 below, since
C is assumed to be strictly positive. That is, its eigenvalues are strictily positive and the kernel space of C
is trivial. In addition, they are assumed to have multiplicity one. Therefore, for any f, g ∈ H, there exist
φ, ϕ ∈ H such that f = C(φ) and g = C(ϕ), and⟨

C−1(f), C−1(g)
⟩
H
=
⟨
C−1(C(φ)), C−1(C(ϕ))

⟩
H
= ⟨φ, ϕ⟩H .

In particular,
∥C−1(f)∥2H <∞, ∀f ∈ H.

Assumption A1. The operator ρ in (A5.1) is self–adjoint with ∥ρ∥L(H) < 1.

Assumption A2. The operatorC is strictly positive, and its positive eigenvalues have multiplicity one. Fur-
thermore,C and ρ admit the following diagonal spectral decompositions, such that for all f, g ∈ H,

C(g)(f) =
∞∑
k=1

Ck ⟨ϕk, g⟩H ⟨ϕk, f⟩H (A5.3)

ρ(g)(f) =
∞∑
k=1

ρk ⟨ϕk, g⟩H ⟨ϕk, f⟩H , (A5.4)

where {Ck, k ≥ 1} and {ρk, k ≥ 1} are the respective systems of eigenvalues of C and ρ, and
{ϕk, k ≥ 1} is the common system of orthonormal eigenvectors of the autocovariance operatorC.

Remark A5.2.1 As commented before, we consider here the case where the eigenvectors {ϕk, k ≥ 1} of the au-
tocovariance operator C are known. Thus, under Assumption A2, the natural way to formulate a component-
wise estimator of the autocorrelation operator ρ is in terms of the respective estimators of its diagonal coefficients
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{ρk, k ≥ 1} , computed from the respective projections of the observed functional data, (X0, . . . , XT ) , into
{ϕk, k ≥ 1}. We adopt here a moment–based classical and Beta–prior–based Bayesian approach in the estima-
tion of such coefficients {ρk, k ≥ 1} .

From the Cauchy–Schwarz’s inequality, applying the Parseval’s identity,

|ρ(g)(f)|2 ≤
∞∑
k=1

|ρk| [⟨ϕk, g⟩H ]
2

∞∑
k=1

|ρk| [⟨ϕk, f⟩H ]
2

≤
∞∑
k=1

[⟨ϕk, g⟩H ]
2

∞∑
k=1

[⟨ϕk, f⟩H ]
2 = ∥g∥2H∥f∥2H <∞.

Thus, equation (A5.4) holds in the weak sense.

From Assumption A2, the projection of Xn into the common eigenvector system {ϕk, k ≥ 1} leads
to the following series expansion in L2

H(Ω,A,P) :

Xn =
∞∑
k=1

√
Ckηk(n)ϕk, ηk(n) =

1√
Ck

⟨Xn, ϕk⟩H , (A5.5)

and, for each j, p ≥ 1, and n > 0,

E {ηj(n)ηp(n)} = E

{
1√
Cj

⟨Xn, ϕj⟩H
1√
Cp

⟨Xn, ϕp⟩H

}
=

1√
Cj

1√
Cp
C(ϕj)(ϕp)

=
1√
Cj

1√
Cp
Cj ⟨ϕj, ϕp⟩H = δj,p,

where the last equality is obtained from the orthonormality of the eigenvectors {ϕk, k ≥ 1}. Hence, un-
der Assumptions A1–A2, the projection of equation (A5.1) into the elements of the common eigenvector
system {ϕk, k ≥ 1} leads to the following infinite-dimensional system of equations:√

Ckηk(n) = ρk
√
Ckηk(n− 1) + εk(n), k ≥ 1, (A5.6)

or equivalently,

ηk(n) = ρkηk(n− 1) +
εk(n)√
Ck

, k ≥ 1, (A5.7)

where
εk(n) = ⟨εn, ϕk⟩H , k ≥ 1, n ∈ Z.
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Thus, for each j ≥ 1,
{aj(n) =

√
Cjηj(n), n ∈ Z}

defines a standard AR(1) process. Its moving average representation of infinite order is given by

aj(n) =
∞∑
k=0

[ρj]
kεj(n− k), n ∈ Z. (A5.8)

Specifically, under Assumption A2,

E {aj(n)ap(n)} =
∞∑
k=0

∞∑
l=0

[ρj]
k[ρp]

lE {εj(n− k)εp(n− l)}

=
∞∑
k=0

∞∑
l=0

[ρj]
k[ρp]

lδk,lδj,p = 0, j ̸= p,

E {aj(n)ap(n)} =
∞∑
k=0

σ2
j [ρj]

2k, j = p, (A5.9)

where
σ2
j = E {εj(n− k)}2 = E {εj(0)}2 .

From equation (A5.9), under Assumptions A1–A2,

E
{
∥X(n)∥2H

}
=

∞∑
j=1

E {aj(n)}2 =
∞∑
j=1

σ2
j

∞∑
k=0

[ρj]
2k

=
∞∑
j=1

σ2
j

[
1

1− [ρj]2

]
=

∞∑
j=1

Cj <∞, (A5.10)

with, as before,
∞∑
j=1

σ2
j = E

{
∥εn∥2H

}
<∞.

Equation (A5.10) leads to the identity

Cj =

[
σ2
j

1− ρ2j

]
, j ≥ 1, (A5.11)

from which, we obtain

ρk =

√
1− σ2

k

λk(C)
, σ2

k = E {⟨ϕk, εn⟩H}
2 , ∀n ∈ Z, k ≥ 1. (A5.12)
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Under (A5.11), equation (A5.7) can also be rewritten as

ηk(n) = ρkηk(n− 1) +
√
1− ρ2k

εk(n)

σk
, k ≥ 1,

Assumption A2B. The sequences {
σ2
k, k ≥ 1

}
, {Ck, k ≥ 1}

satisfy

σ2
k

Ck
≤ 1, k ≥ 1, lim

k→∞

σ2
k

Ck
= 0,

σ2
k

Ck
= O(k−1−γ), γ > 0, k → ∞.

(A5.13)

Equation (A5.13) means that{σ2
k, k ≥ 1} and{Ck, k ≥ 1} are both summable sequences, with faster

decay to zero of the sequence{σ2
k, k ≥ 1} than the sequence{Ck, k ≥ 1} , leading, from equations (A5.11)–

(A5.12), to the definition of {ρ2k, k ≥ 1} as a sequence with accumulation point at one.

Remark A5.2.2 Under Assumption A2B and A3 below holds.

For each k ≥ 1, from equations (A5.6)–(A5.8),

T∑
n=1

[ηk(n− 1)]2 =
1

Ck

[
T∑
n=1

[εk(n− 1)]2

+
T∑
n=1

∞∑
l=1

∞∑
p=1

[ρk]
l[ρk]

pεk(n− 1− l)εk(n− 1− p)

]

=
1

Ck

[
T∑
n=1

[εk(n− 1)]2 + S(T, k)

]
,

where

S(T, k) =
T∑
n=1

∞∑
l=1

∞∑
p=1

[ρk]
l[ρk]

pεk(n− 1− l)εk(n− 1− p).

Hence,
T∑
n=1

[εk(n− 1)]2 + S(T, k) ≥ 0, for every T ≥ 1, and k ≥ 1.
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Assumption A3. There exists a sequence of real-valued independent random variables
{
M̃(k), k ≥ 1

}
such that

inf
T≥1

√√√√√√√√√
∣∣∣∣∣∣∣∣∣∣

S(T, k)

T

(
T−1∑
n=1

[εk(n)]
2 + [εk(0)]

2

)
∣∣∣∣∣∣∣∣∣∣

= inf
T≥1

√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣

T∑
n=1

∞∑
l=1

∞∑
p=1

[ρk]
l[ρk]

pεk(n− 1− l)εk(n− 1− p)

T

(
T−1∑
n=1

[εk(n)]
2 + [εk(0)]

2

)
∣∣∣∣∣∣∣∣∣∣∣

≥ [M̃(k)]−1 a.s.,

with
∞∑
k=1

E
{
M̃(k)

}l
<∞, 1 ≤ l ≤ 4. (A5.14)

Remark A5.2.3 Note that the mean value of

T∑
n=1

∞∑
l=1

∞∑
p=1

[ρk]
l[ρk]

pεk(n− 1− l)εk(n− 1− p)

is of order Tσ2
k

1−(ρk)2
, and the mean value of

T

(
T−1∑
n=1

[εk(n)]
2 + [εk(0)]

2

)

is of order T (T − 1)σ2
k.Hence, for the almost surely boundedness of the inverse of∣∣∣∣∣∣∣∣∣∣

S(T, k)

T

(
T−1∑
n=1

[εk(n)]
2 + [εk(0)]

2

)
∣∣∣∣∣∣∣∣∣∣
,

by a suitable sequence of random variables with summable l–moments, for l = 1, 2, 3, 4, the eigenvalues of op-
erator ρmust be close to one but strictly less than one. As commented in Remark A5.2.2, from Assumption A2B,
this condition is satisfied in view of equation (A5.12).

Assumption A4. E {ηj(m)ηk(n)} = δj,k, with, as before, δj,k denoting the Kronecker delta function, for
everym,n ∈ Z, and j, k ≥ 1.
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Remark A5.2.4 Assumption A4 implies that the cross–covariance operatorD admits a diagonal spectral decom-
position in terms of the system of eigenvectors {ϕk, k ≥ 1} .Thus, under Assumption A4, the diagonal spectral
decompositions (A5.3)–(A5.4) also hold.

The classical diagonal componentwise estimator ρ̂T of ρ considered here is given by

ρ̂T =
∞∑
k=1

ρ̂k,Tϕk ⊗ ϕk

ρ̂k,T =

T∑
n=1

ak(n− 1)ak(n)

T∑
n=1

[ak(n− 1)]2

=

T∑
n=1

⟨Xn−1, ϕk⟩H ⟨Xn, ϕk⟩H

T∑
n=1

[⟨Xn−1, ϕk⟩H ]
2

=

T∑
n=1

Xn−1,kXn,k

T∑
n=1

X2
n−1,k

, k ≥ 1. (A5.15)

From equations (A5.6)–(A5.7) and (A5.11), for each k ≥ 1,

ρ̂k,T − ρk =

T∑
n=1

Xn−1,kXn,k

T∑
n=1

[Xn−1,k]
2

− ρk

=

T∑
n=1

ρk[ηk(n− 1)]2 + (ηk(n− 1)εk(n))/
√
Ck

T∑
n=1

[ηk(n− 1)]2

− ρk

= ρk +

T∑
n=1

ηk(n− 1)εk(n)

√
Ck

T∑
n=1

[ηk(n− 1)]2

− ρk
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=

T∑
n=1

ηk(n− 1)εk(n)

√
σ2
k/(1− ρ2k)

T∑
n=1

[ηk(n− 1)]2

=
√

1− ρ2k

T∑
n=1

ηk(n− 1)[εk(n)/σk]

T∑
n=1

[ηk(n− 1)]2

. (A5.16)

Remark A5.2.5 It is important to note that, for instance, unconditional bases, like wavelets, provide the spec-
tral diagonalization of an extensive family of operators, including pseudodifferential operators, and in particular,
Calderón–Zygmund operators (see Kyriazis and Petrushev [2001]; Meyer and Coifman [1997]). Therefore, the
diagonal spectral representations (A5.3)–(A5.4), in Assumption A2, hold for a wide class of autocovariance and
cross-covariance operators, for example, in terms of wavelets. When the autocovariance and the cross–covariance
operators are related by a continuous function, the diagonal spectral representations (A5.3)–(A5.4) are also satis-
fied (see [Dautray and Lions, 1990, pp. 119, 126 and 140]). Assumption A2 has been considered, for example,
in [Bosq, 2000, Theorem 8.5, pp. 215–216; Theorem 8.7, p. 221], to establish strong consistency, although, in
this book, a different setting of conditions is assumed. Thus, Assumptions A1–A2 already have been used (e.g., in
Álvarez-Liébana et al. [2017]; Bosq [2000]; Ruiz-Medina and Álvarez-Liébana [2018a]), and Assumptions
A2B,A3 andA4 appear inRuiz-Medina et al. [2016]. AssumptionsA2B is needed since the usual assumption on
theHilbert–Schmidt property ofρ,made by several authors, is not considered here. At the same type, as commented
before, Assumptions A2B implies Assumption A3.

The following lemmas will be used in the derivation of the main results of this paper, Theorems A5.4.1
and A5.4.2, obtained in the Gaussian ARH(1) context.

LemmaA5.2.1 Let {Xi, i = 1, . . . , n} , be the values of a standard zero–mean autoregressive process of order
one (AR(1) process) at times i = 1, . . . , n, and

ρ̂n =

n∑
i=1

Xi−1Xi

n∑
i=1

X 2
i−1

,

withX1 representing the random initial condition. Assume that |ρ| < 1, and that the innovation process is white
noise. Then, as n→ ∞,

√
n
ρ̂n − ρ√
1− ρ2

−→
L

N (0, 1).
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The proof of Lemma A5.2.1 can be found in [Hamilton, 1994, p. 216].

LemmaA5.2.2 LetX1 andX2 be two normal distributed random variables having correlation ρX1X2 , and with
means µ1 and µ2, and variances σ2

1 and σ2
2, respectively. Then, the following identities hold:

E {X1X2} = µ1µ2 + ρX1X2σ1σ2

Var {X1X2} = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2ρX1X2µ1µ2σ1σ2 + ρ2X1X2

σ2
1σ

2
2 (A5.17)

(see, for example, Aroian [1947]; Ware and Lad [2003]).

LemmaA5.2.3 For each k ≥ 1, the following limit is obtained:

lim
T→∞

TE {ρ̂k,T − ρk}2 = 1− ρ2k, k ≥ 1 (A5.18)

(see, for example, Bartlett [1946]).

A5.3 Bayesian diagonal componentwise estimation

Now let us denote byR the functional random variable on the basic probability space (Ω,A,P), char-
acterized by the prior distribution for ρ. In our case, we assume thatR is of the form

R(f)(g) =
∞∑
k=1

Rk ⟨ϕk, f⟩H ⟨ϕk, g⟩H a.s., ∀f, g ∈ H,

where, for k ≥ 1, Rk is a real–valued random variable such that R(ϕj)(ϕk) = δj,kRk, almost surely, for
every j ≥ 1. In the following, Rk is assumed to follow a beta distribution with shape parameters ak > 0
and bk > 0; i.e., Rk ∼ B(ak, bk), for every k ≥ 1. We also assume that R is independent of the func-
tional components of the innovation process {εn, n ∈ Z} , and that the random variables {Rk, k ≥ 1} ,
are globally independent. That is, for each f, g ∈ H,

φf,gR (t) = E

{
exp

(
it

∞∑
k=1

Rk ⟨ϕk, f⟩H ⟨ϕk, g⟩H

)}

=
∞∏
k=1

E {exp (itRk ⟨ϕk, f⟩H ⟨ϕk, g⟩H)} =
∞∏
k=1

φRk
(t ⟨ϕk, f⟩H ⟨ϕk, g⟩H) .(A5.19)

Thus,

φR(t) =
∞∏
k=1

φRk
(t (ϕk ⊗ ϕk)) ,
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where the last identity is understood in the weak–sense; i.e., in the sense of equation (A5.19).
In the definition ofR from {Rj, j ≥ 1},we can then apply the Kolmogorov extension Theorem under

the condition
∞∑
j=1

ajbj
(aj + bj + 1)(aj + bj)2

<∞

(see, for example, Khoshnevisan [2007]).
As in the real–valued case (see Supplementary Material A5.7), considering bj > 1, for each j ≥ 1, the

Bayes estimator of ρ is defined by (see Case 2 in Supplementary Material A5.7)

ρ̃T =
∞∑
j=1

ρ̃j,Tϕj ⊗ ϕj, (A5.20)

with, for every j ≥ 1,

ρ̃j,T =
1

2βj,T

[
(αj,T + βj,T )±

√
(αj,T − βj,T )2 − 4βj,Tσ2

j [2− (aj + bj)]
]

=

[
T∑
i=1

xi−1,jxi,j + x2i−1,j

]

2
T∑
i=1

x2i−1,j

±

√√√√[ T∑
i=1

xi−1,jxi,j − x2i−1,j

]2
− 4σ2

j

[
T∑
i=1

x2i−1,j

]
[2− (aj + bj)]

2
T∑
i=1

x2i−1,j

, (A5.21)

where

αj,T =
T∑
i=1

xi−1,jxi,j, βj,T =
T∑
i=1

x2i−1,j, j ≥ 1, n ≥ 2. (A5.22)

A5.4 Asymptotic efficiency and equivalence

In this section, sufficient conditions are derived to ensure the asymptotic efficiency and equivalence of
the diagonal componentwise estimators of ρ formulated in the classical (see equation (A5.15)), and in the
Bayesian (see equations (A5.20)–(A5.22)) frameworks.
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TheoremA5.4.1 Under Assumptions A1–A2, A2B, A3 and A4, let us assume that the ARH(1) process X
satisfies, for each j ≥ 1, and, for every T ≥ 2,

T∑
i=1

εj(i)Xi−1,j ≥ 0, a.s. (A5.23)

That is, {εj(i), i ≥ 1} and {Xi−1,j, i ≥ 0} are almost surely positive empirically correlated. In addition, for
every j ≥ 1, the hyper–parameters aj and bj of the beta prior distribution,B(aj, bj), are such that aj+bj ≥ 2.
Then, the following identities are obtained:

lim
T→∞

TE
{
∥ρ̃−T − ρ∥2S(H)

}
= lim

T→∞
TE
{
∥ρ̂T − ρ∥2S(H)

}
=

∞∑
k=1

σ2
k

Ck
<∞, (A5.24)

where ρ̂T is defined in equation (A5.15), and ρ̃−T is defined from equations (A5.20)–(A5.22), considering

ρ̃−j,T =
1

2βj,T

[
(αj,T + βj,T )−

√
(αj,T − βj,T )2 − 4βj,Tσ2

j [2− (aj + bj)]
]
, (A5.25)

with, as before, for each j ≥ 1,
Xi,j = ⟨Xi, ϕj⟩H , i = 0, . . . , T,

and αj,T and βj,T are given in (A5.22), for every T ≥ 2.

Proof. Under Assumptions A1–A2, from Remark A5.8.1 and Corollary A5.8.1 in Supplementary Material
A5.8, for each j ≥ 1, and for T sufficiently large,

|ρ̂j,T | ≤ 1, a.s.

Also, under (A5.23),

T∑
i=1

ρjX
2
i−1,j + εj(i)Xi−1 ≥

T∑
i=1

ρjX
2
i−1,j, a.s.,

which is equivalent to

ρ̂j,T =

T∑
i=1

ρjX
2
i−1,j + εj(i)Xi−1

T∑
i=1

X2
i−1,j

≥ ρj, a.s., (A5.26)

for every j ≥ 1.
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From (A5.26), to obtain the following a.s. inequality:

2|ρ̃−j,T − ρj| =

∣∣∣∣∣∣ρ̂j,T − ρj + 1− ρj −

√
(ρ̂j,T − 1)2 −

4σ2
j [2− (aj + bj)]

βj,T

∣∣∣∣∣∣
≤ 2|ρ̂j,T − ρj| a.s, j ≥ 1, (A5.27)

it is sufficient that

−ρ̂j,T + ρj ≤ 1− ρj −

√
(ρ̂j,T − 1)2 −

4σ2
j [2− (aj + bj)]

βj,T
≤ ρ̂j,T − ρj a.s,

which is equivalent to

0 ≤ −2− (aj + bj)

βj,T
≤ 4(ρ̂j,T − ρj)(1− ρj)

βj,T
4σ2

j

a.s.. (A5.28)

That is, keeping in mind that

σ2
j = Cj(1− ρ2j) = Cj(1 + ρj)(1− ρj),

condition (A5.28) can also be expressed as

0 ≤ −2− (aj + bj)

βj,T
≤ 4(ρ̂j,T − ρj)(1− ρj)

βj,T
4Cj(1 + ρj)(1− ρj)

, a.s.

i.e.,

0 ≤ −2− (aj + bj)

βj,T
≤ (ρ̂j,T − ρj)

βj,T
Cj(1 + ρj)

a.s,

for j ≥ 1. Since, for each j ≥ 1,
βj,T

Cj(1 + ρj)
≥ βj,T

2Cj
,

it is sufficient that
0 ≤ −2− (aj + bj)

βj,T
≤ (ρ̂j,T − ρj)

βj,T
2Cj

a.s. (A5.29)

to hold to ensure that inequality (A5.27) is satisfied. Furthermore, from Remark A5.8.1 and Corollary
A5.8.1, in Supplementary Material A5.8, for each j ≥ 1, βj,T → ∞, and

βj,T = O(T ), T → ∞, a.s., j ≥ 1.

Also, we have, from such remark and theorem, that

(ρ̂j,T − ρj) = O(1), T → ∞, a.s., j ≥ 1.
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Thus, for each j ≥ 1, the upper bound, in (A5.29), diverges asT → ∞,which means, that, forT sufficiently
large, inequality (A5.27) holds, if aj+ bj ≥ 2, for each j ≥ 1.Now, from (A5.27), underAssumptionA3,
for each j ≥ 1,

T |ρ̂j,T − ρj|2 ≤ M̃2(j) a.s., T |ρ̃−j,T − ρj|2 ≤ T |ρ̂j,T − ρj|2 ≤ M̃2(j) a.s. (A5.30)

Furthermore, for each j ≥ 1, βj,T → ∞, and βj,T = O(T ), as T → ∞, almost surely. Hence,

−
4σ2

j [2− (aj + bj)]

βj,T
−→ 0, T −→ ∞, a.s., ∀j ≥ 1.

From equation (A5.25), we then have that, for each j ≥ 1,

lim
T→∞

∣∣ρ̃−j,T − ρ̂j,T
∣∣ = lim

T→∞

∣∣∣∣∣12
[
(ρ̂j,T + 1)−

(
(ρ̂j,T − 1)2 − 4

βj,T
σ2
j [2− (aj + bj)]

)1/2
]
− ρ̂j,T

∣∣∣∣∣
= lim

T→∞
|ρ̂j,T − ρ̂j,T | = 0,

(A5.31)

almost surely. Thus, the almost surely convergence, when T → ∞, of ρ̃−j,T and ρ̂j,T to the same limit is
obtained, for every j ≥ 1.

From equation (A5.30),

T [ρ̃−j,T − ρ̂j,T ]
2 ≤ 2T

[(
ρ̃−j,T − ρj

)2
+ (ρ̂j,T − ρj)

2
]
≤ 4M̃2(j), a.s. (A5.32)

Since E
{
M̃2(j)

}
< ∞, applying the Dominated Convergence Theorem, from equation (A5.32),

considering (A5.18) we obtain, for each j ≥ 1,

lim
T→∞

TE
{
ρ̃−j,T − ρj

}2
= lim

T→∞
TE {ρ̂j,T − ρj}2 = 1− ρ2j . (A5.33)

Under Assumptions A3, from (A5.30), for each j ≥ 1, and for every T ≥ 1,

E {ρ̂j,T − ρj}2 ≤ E
{
M̃2(j)

}
, TE

{
ρ̃−j,T − ρj

}2 ≤ E
{
M̃2(j)

}
with

∞∑
j=1

E
{
M2(j)

}
<∞.

Applying again the Dominated Convergence Theorem (with integration performed with respect to a
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counting measure), we obtain from (A5.33), keeping in mind relationship (A5.12),

lim
T→∞

∞∑
j=1

TE
{
ρ̃−j,T − ρj

}2
=

∞∑
j=1

lim
T→∞

TE
{
ρ̃−j,T − ρj

}2
=

∞∑
j=1

lim
T→∞

TE {ρ̂j,T − ρj}2

=
∞∑
j=1

1− ρ2j =
∞∑
j=1

σ2
j

Cj
= lim

T→∞

∞∑
j=1

TE {ρ̂j,T − ρj}2 <∞,

in view of equation (A5.13) in Assumption A2B. That is, equation (A5.24) holds.
�

TheoremA5.4.2 Under the conditions ofTheorem A5.4.1,

lim
T→∞

TE
{
∥ρ̃−T (XT )− ρ(XT )∥2H

}
= lim

T→∞
TE
{
∥ρ̂T (XT )− ρ(XT )∥2H

}
=

∞∑
k=1

Ck(1− ρ2k).

(A5.34)

Here,

ρ̃−T (XT ) =
∞∑
j=1

ρ̃−j,T ⟨XT , ϕj⟩H ϕj,

ρ̃−j,T =
1

2βj,T

[
(αj,T + βj,T )−

√
(αj,T − βj,T )2 − 4βj,Tσ2

j [2− (aj + bj)]
]
, j ≥ 1

ρ̂T (XT ) =
∞∑
j=1

ρ̂j,T ⟨XT , ϕj⟩H ϕj, ρ̂j,T

T∑
i=1

Xi−1,jXi,j

T∑
i=1

X2
i−1,j

, j ≥ 1

ρ(XT ) =
∞∑
j=1

ρj ⟨XT , ϕj⟩H ϕj, ρj = ρ(ϕj)(ϕj), j ≥ 1.

Proof.
From equation (A5.31), for every j, k ≥ 1,[(

ρ̃−j,T − ρ̂j,T
) (
ρ̃−k,T − ρ̂k,T

)]2 → 0, a.s., T → ∞. (A5.35)

In addition, from equation (A5.32), for every j, k ≥ 1,

[(
ρ̃−j,T − ρ̂j,T

) (
ρ̃−k,T − ρ̂k,T

)]2 ≤ 16
M̃2(k)M̃2(j)

T 2
≤ 16M̃2(k)M̃2(j), (A5.36)
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with
E
{
M̃2(k)M̃2(j)

}
= E

{
M̃2(k)

}
E
{
M̃2(j)

}
<∞,

under Assumption A3. Applying the Dominated Convergence Theorem from (A5.36), the almost surely
convergence in (A5.35) implies the convergence in mean to zero, when T → ∞. Furthermore, under
Assumption A3, for T ≥ 2,

∞∑
j=1

∞∑
k=1

T 2E
{(
ρ̃−j,T − ρ̂j,T

) (
ρ̃−k,T − ρ̂k,T

)]2 ≤ 16

 ∞∑
j,k=1
j ̸=k

E
{
M̃2(j)

}
E
{
M̃2(k)

}
+

[
∞∑
k=1

E
{
M̃4(k)

}]
<∞. (A5.37)

From (A5.37), for every T ≥ 2,

T 2E
{
∥ρ̃−T − ρ̂T∥4S(H)

}
=

∞∑
j=1

∞∑
k=1

T 2E
{
(ρ̃−j,T − ρ̂j,T )(ρ̃

−
k,T − ρ̂k,T )

}2

≤ 16

 ∞∑
j,k=1
j ̸=k

E
{
M̃2(j)

}
E
{
M̃2(k)

}
+

[
∞∑
k=1

E
{
M̃4(k)

}]
<∞. (A5.38)

Equation (A5.38) means that the rate of convergence to zero, as T → ∞, of the functional sequence{
ρ̃−T − ρ̂T , T ≥ 2

}
in the space L4

S(H)(Ω,A, P ) is of order T−2.
From definition of the norm in the space bounded linear operators, applying the Cauchy–Schwarz’s

inequality, we obtain

E
{
∥ρ̃−T (XT )− ρ̂T (XT )∥2H

}
≤ E

{
∥ρ̃−T − ρ̂T∥2L(H)∥XT∥2H

}
≤

√
E
{
∥ρ̃−T − ρ̂T∥4L(H)

}√
E {∥XT∥4H}

≤
√

E
{
∥ρ̃−T − ρ̂T∥4S(H)

}√
E {∥XT∥4H}. (A5.39)

From the orthogonal expansion (A5.5) ofXT , in terms of the independent real–valued standard Gaus-
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sian random variables {ηk(T ), k ≥ 1} ,we have

E
{
∥XT∥4H

}
=

∞∑
j=1

∞∑
k=1

CjCkE {ηj(T )ηk(T )}2 =
∞∑
j=1

∞∑
k=1

CjCk3δj,k

= 3
∞∑
k=1

C2
j <∞. (A5.40)

From equations (A5.38)–(A5.40),

E
{
∥ρ̃−T (XT )− ρ̂T (XT )∥2H

}
= O

(
1

T

)
, T → ∞.

Thus, ρ̃−T (XT ) and ρ̂T (XT ) have the same limit in the space L2
H(Ω,A,P).

We now prove the approximation by Tr (C (I − ρ2)) of the limit, in equation (A5.34). Consider

E
{
∥ρ̂T (XT )− ρ(XT )∥2H

}
− Tr

(
C(I − ρ2)

)
=

∞∑
k=1

E
{
(ρ̂k,T − ρk)

2 η2k(T )
}
Ck − Ck(1− ρ2k),

(A5.41)
where

Tr
(
C(I − ρ2)

)
=

∞∑
k=1

Ck(1− ρ2k).

From Lemmas A5.2.1– A5.2.2 (see the last identity in equation (A5.17)), for each k ≥ 1, and for T
sufficiently large,

E
{
(ρ̂k,T − ρk)

2 η2k(T )
}

≃ Var {ρ̂k,T − ρk}Var {ηk} ×
(
1 + 2 [Corr (ρ̂k,T − ρk, ηk(T ))]

2) .
(A5.42)

Under Assumption A3, from equations (A5.14)–(A5.16), for every k ≥ 1,

TVar {ρ̂k,T − ρk} ≤
(
1− ρ2k

)
E
{
M̃2(k)

}
. (A5.43)
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From equations (A5.41)–(A5.43),

TE
{
∥ρ̂T (XT )− ρ(XT )∥2H

}
− Tr

(
C(I − ρ2)

)
≤

∞∑
k=1

Ck(1− ρ2k)E
{
M̃2(k)

}
×

[
1 + 2 [Corr (ρ̂k,T − ρk, ηk(T ))]

2]
− Ck(1− ρ2k) ≤

∞∑
k=1

3CkE
{
M̃2(k)

}
−

∞∑
k=1

Ck(1− ρ2k) <∞, (A5.44)

since
∞∑
k=1

Ck(1− ρ2k) ≤
∞∑
k=1

Ck <∞,

by the trace property of C. Here, we have applied the Cauchy–Schwarz’s inequality to obtain, for a certain
constantL > 0,

∞∑
k=1

3CkE
{
M̃2(k)

}
≤ 3

√√√√ ∞∑
k=1

C2
k

∞∑
k=1

[
E
{
M̃2(k)

}]2

≤ 3L

√√√√ ∞∑
k=1

Ck

∞∑
k=1

E
{
M̃2(k)

}
<∞,

from the trace property ofC, and since

∞∑
k=1

E
{
M̃2(k)

}
<∞,

under Assumption A3.
From equations (A5.18) and (A5.44), one can get, applying the Dominated Convergence Theorem,

lim
T→∞

TE
{
∥ρ̂T (XT )− ρ(XT )∥2H

}
=

∞∑
k=1

Ck lim
T→∞

TE {ρ̂k,T − ρk}2

× lim
T→∞

[
1 + [Corr (ρ̂k,T − ρk, ηk(T ))]

2]
=

∞∑
k=1

Ck lim
T→∞

TE {ρ̂k,T − ρk}2

=
∞∑
k=1

Ck(1− ρ2k),
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where we have considered that

lim
T→∞

|Cov (ρ̂k,T − ρk, ηk(T ))|2 ≤ lim
T→∞

E {ρ̂k,T − ρk}2 E {ηk(T )}2 = lim
T→∞

1− ρ2k
T

= 0.

�

A5.5 Numerical examples

This section illustrates the theoretical results derived on asymptotic efficiency and equivalence of the
proposed classical and Bayesian diagonal componentwise estimators of the autocorrelation operator, as well
as of the associated ARH(1) plug–in predictors. Under the conditions assumed in Theorem A5.4.1, three
examples of standard zero–mean Gaussian ARH(1) processes are generated, respectively corresponding
to consider different rates of convergence to zero of the eigenvalues of the autocovariance operator. The
truncation order kT in Examples 1–2 (see Sections A5.5.1–A5.5.2) is fixed; i.e., it does not depend on the
sample size T (see equations (A5.46)–(A5.47) below). While in Example 3 (see Section A5.5.3), kT is
selected such that

lim
T→∞

CkT
√
T = ∞. (A5.45)

Specifically, in the first two examples, the choice of kT is driven looking for a compromise between
the sample size and the number of parameters to be estimated. With this aim the value kT = 5 is fixed,
independently ofT.This is the number of parameters that can be estimated in an efficient way, from most of
the values of the sample size T studied. In Example 3, the truncation parameter kT is defined as a fractional
power of the sample size. Note that Example 3 corresponds to the fastest decay velocity of the eigenvalues
of the autocovariance operator. Hence, the lowest truncation order for a given sample size must be selected
according to the truncation rule (A5.45).

The generation ofN = 1000 realizations of the functional values {Xt, t = 0, 1, . . . , T}, for

T = [250, 500, 750, 1000, 1250, 1500, 1750, 2000] ,

denoting as before the sample size, is performed, for each one of the ARH(1) processes, defined in the
three examples below. Based on those generations, and on the sample sizes studied, the truncated empirical
functional mean-square errors of the classical and Bayes diagonal componentwise parameter estimators of
the autocorrelation operator ρ are computed as follows:

EFMSEρT =
1

N

N∑
ω=1

kn∑
j=1

(
ρωj,T − ρj

)2
, (A5.46)

EFMSEρT (XT ) =
1

N

N∑
ω=1

kn∑
j=1

(
ρωj,T − ρj

)2
X2
T,j, (A5.47)
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where ρωj,T can be the classical ρ̂j,T or the Bayes ρ̃j,T diagonal componentwise estimator of the autocorrela-
tion operator, and ω denotes the sample pointω ∈ Ω associated with each one of theN = 1000 realizations
generated of each functional value of the ARH(1) processX.

On the other hand, as assumed in the previous section,

ρk ∼ B (ak, bk) , ak + bk ≥ 2, ak > 0, bk > 1,

for each k ≥ 1. Thus, parameters (ak, bk) are defined as follows:

bk = 1 + 1/100, ak = 2k, k ≥ 1, (A5.48)

where

E {ρk} =
ak

ak + bk
→ 1, Var {ρk} =

akbk

(ak + bk + 1) (ak + bk)
2 = O

(
1

22k

)
, k → ∞,

(A5.49)
with {ρ2k, k ≥ 1} being a random sequence such that its elements tend to be concentrated around point
one, when k → ∞. From (A5.49), since

σ2
k = Ck

(
1− ρ2k

)
, k ≥ 1, (A5.50)

Assumption A2B is satisfied. In addition, condition (A5.23) is verified in the generations performed
in the Gaussian framework.

A5.5.1 Example 1

Let us assume that the eigenvalues of the autocovariance operator of the ARH(1) process X are given
by

Ck =
1

k3/2
, k ≥ 1.

Thus,C is a strictly positive and trace operator, where{
ρ2k, k ≥ 1

}
,
{
σ2
k, k ≥ 1

}
,

are generated from (A5.48)–(A5.50).
Tables A5.5.1–A5.5.2 display the values of the empirical functional mean–square errors, given in (A5.46)–

(A5.47), associated with ρ̂T and ρ̃−T , and with the corresponding ARH(1) plug–in predictors, with, as be-
fore,

T = [250, 500, 750, 1000, 1250, 1500, 1750, 2000] , (A5.51)

consideringkT = 5.The respective graphical representations are displayed in Figures A5.5.1–A5.5.2, where,
for comparative purposes, the values of the curve 1/T are also drawn for the finite sample sizes (A5.51).

277



Table A5.5.1: Example 1. Empirical functional mean-square errors EFMSEρT .

Sample size Classical estimator ρ̂T Bayes estimator ρ̃−T
250 2.13 (10)−3 2.23 (10)−3

500 1.24 (10)−3 1.04 (10)−3

750 8.44 (10)−4 7.13 (10)−4

1000 6.91 (10)−4 5.84 (10)−4

1250 5.97 (10)−4 4.72 (10)−4

1500 4.89 (10)−4 3.98 (10)−4

1750 4.13 (10)−4 3.06 (10)−4

2000 3.61 (10)−4 2.59 (10)−4

Table A5.5.2: Example 1. Empirical functional mean-square errors EFMSEρT (XT ).

Sample size Classical predictor ρ̂T (XT ) Bayes predictor ρ̃−T (XT )

250 1.22 (10)−3 1.42 (10)−3

500 6.08 (10)−4 6.36 (10)−4

750 3.24 (10)−4 4.06 (10)−4

1000 3.05 (10)−4 2.77 (10)−4

1250 2.74 (10)−4 2.39 (10)−4

1500 2.07 (10)−4 1.78 (10)−4

1750 1.71 (10)−4 1.48 (10)−4

2000 1.64 (10)−4 1.42 (10)−4
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Figure A5.5.1: Example 1. Empirical functional mean-square estimation errors of classical (blue cir-
cle line), and Bayes (green cross line) componentwise ARH(1) parameter estimators, with kT = 5,
for N = 1000 replications of the ARH(1) values, against the curve 1/T (red dot line), for T =
[250, 500, 750, 1000, 1250, 1500, 1750, 2000].
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Figure A5.5.2: Example 1. Empirical functional mean-square prediction errors of classical (blue cir-
cle line), and Bayes (green cross line) componentwise ARH(1) plug-in predictors, with kT = 5,
for N = 1000 replications of the ARH(1) values, against the curve 1/T (red dot line), for T =
[250, 500, 750, 1000, 1250, 1500, 1750, 2000].

A5.5.2 Example 2

In this example, a bit slower decay velocity, than in Example 1, of the eigenvalues of the autocovariance
operator of the ARH(1) process is considered. Specifically,

Ck =
1

k1+1/10
, k ≥ 1.

Thus, C is a strictly positive self-adjoint trace operator, where {ρ2k, k ≥ 1} and {σ2
k, k ≥ 1} are gen-

erated, as before, from (A5.48)-(A5.50).
Tables A5.5.3–A5.5.4 show the values of the empirical functional mean–square errors, associated with

ρ̂T and ρ̃−T , and with the corresponding ARH(1) plug–in predictors, respectively. Figures A5.5.3–A5.5.4
provide the graphical representations in comparison with the values of the curve1/T forT given in (A5.51),
with, as before, kT = 5.
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Table A5.5.3: Example 2. Empirical functional mean–square errors EFMSEρT .

Sample size Classical estimator ρ̂T Bayes estimator ρ̃−T
250 4.18 (10)−3 6.09 (10)−3

500 2.20 (10)−3 2.30 (10)−3

750 1.52 (10)−3 1.39 (10)−3

1000 1.14 (10)−3 1.00 (10)−3

1250 9.55 (10)−4 7.97 (10)−4

1500 7.97 (10)−4 6.64 (10)−4

1750 7.01 (10)−4 5.37 (10)−4

2000 6.22 (10)−4 5.00 (10)−4

Table A5.5.4: Example 2. Empirical functional mean–square errors EFMSEρT (XT ).

Sample size Classical predictor ρ̂T (XT ) Bayes predictor ρ̃−T (XT )

250 3.25 (10)−3 3.18 (10)−4

500 1.59 (10)−3 1.40 (10)−4

750 9.47 (10)−4 8.19 (10)−4

1000 7.89 (10)−4 6.88 (10)−4

1250 7.24 (10)−4 6.10 (10)−4

1500 5.53 (10)−4 4.77 (10)−4

1750 5.31 (10)−4 4.49 (10)−4

2000 4.61 (10)−4 4.00 (10)−4
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Figure A5.5.3: Example 2. Empirical functional mean–square estimation errors of classical (blue cir-
cle line), and Bayes (green cross line) componentwise ARH(1) parameter estimators, with kT =
5, for N = 1000 replications of the ARH(1) values, against the curve 1/T (red dot line), for
T = [250, 500, 750, 1000, 1250, 1500, 1750, 2000] .
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Figure A5.5.4: Example 2. Empirical functional mean–square prediction errors of classical (blue cir-
cle line), and Bayes (green cross line) componentwise ARH(1) plug-in predictors, with kT = 5,
for N = 1000 replications of the ARH(1) values, against the curve 1/T (red dot line), for
T = [250, 500, 750, 1000, 1250, 1500, 1750, 2000] .

A5.5.3 Example 3

It is well–known that the singularity of the inverse of the autocovariance operator C increases, when
the rate of convergence to zero of the eigenvalues of C indicates a faster decay velocity, as in this example.
Specifically, here,

Ck =
1

k2
, k ≥ 1.

As before, {ρ2k, k ≥ 1} and {σ2
k, k ≥ 1} are generated from (A5.48)-(A5.50). The truncation order

kT satisfies
kT = ⌈T 1/α⌉, lim

T→∞
kT = ∞, lim

T→∞

√
TCkT = ∞ (A5.52)

(see also the simulation study undertaken in Álvarez-Liébana et al. [2017], for the case of ρ being a Hilbert–
Schmidt operator). In particular, (A5.52) holds for 1

2
− 2

α
> 0. Thus, α > 4, and we consider α = 4.1,

i.e., kT = ⌈T 1/4.1⌉.
Tables A5.5.5–A5.5.6 show the empirical functional mean–square errors associated with ρ̂T and ρ̃−T , and

with the corresponding ARH(1) plug–in predictors, respectively. As before, Figures A5.5.5–A5.5.6 provide
the graphical representations, and the values of the curve 1/T, for T in (A5.51), with the aim of illustrating
the rate of convergence to zero of the truncated empirical functional mean quadratic errors.
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Table A5.5.5: Example 3. Empirical functional mean-square errors EFMSEρT .

Sample size kT Classical estimator ρ̂T Bayes estimator ρ̃−T
250 3 1.73 (10)−3 1.52 (10)−3

500 4 9.72 (10)−4 1.01 (10)−3

750 5 6.98 (10)−4 7.10 (10)−4

1000 5 5.63 (10)−4 4.35 (10)−4

1250 5 4.49 (10)−4 2.84 (10)−4

1500 5 3.94 (10)−4 2.24 (10)−4

1750 6 3.31 (10)−4 1.84 (10)−4

2000 7 3.05 (10)−4 1.70 (10)−4

Table A5.5.6: Example 3. Empirical functional mean–square errors EFMSEρT (XT ).

Sample size kT Classical predictor ρ̂T (XT ) Bayes predictor ρ̃−T (XT )

250 3 1.92 (10)−3 1.31 (10)−3

500 4 8.24 (10)−4 5.75 (10)−4

750 5 5.60 (10)−4 4.08 (10)−4

1000 5 3.52 (10)−4 2.54 (10)−4

1250 5 2.62 (10)−4 1.45 (10)−4

1500 5 2.00 (10)−4 1.02 (10)−4

1750 6 1.37 (10)−4 9.57 (10)−5

2000 6 1.13 (10)−4 8.55 (10)−5
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Figure A5.5.5: Example 3. Empirical functional mean–square estimation errors of classical (blue circle
line), and Bayes (green cross line) componentwise ARH(1) parameters estimators, with kT = ⌈T 1/α⌉,
α = 4.1, for N = 1000 replications of the ARH(1) values, against the curve 1/T (red dot line), for
T = [250, 500, 750, 1000, 1250, 1500, 1750, 2000].
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Figure A5.5.6: Example 3. Empirical functional mean–square prediction errors of classical (blue circle
line), and Bayes (green cross line) componentwise ARH(1) plug-in predictors, with kT = ⌈T 1/α⌉, α =
4.1, for N = 1000 replications of the ARH(1) values, against the curve 1/T (red dot line), for T =
[250, 500, 750, 1000, 1250, 1500, 1750, 2000].

In Examples 1–2 in Sections A5.5.1–A5.5.2, where a common fixed truncation order is considered, we
can observe that the biggest values of the empirical functional mean–square errors are located at the smallest
sample sizes, for which the number kT = 5 of parameters to be estimated is too large, with a slightly worse
performance for those sample sizes, in Example 3 in Seciton A5.5.2, where a slower decay velocity, than in
Example 1, of the eigenvalues of the autocovariance operatorC is considered. Note that, on the other hand,
when a slower decay velocity of the eigenvalues ofC is given, a larger truncation order is required to explain
a given percentage of the functional variance. For the fastest rate of convergence to zero of the eigenvalues
of the autocovariance operator C, in Example 3, to compensate the singularity of the inverse covariance
operatorC−1, a suitable truncation order kT is fitted, depending on the sample size T, obtaining a slightly
better performance than in the previous cases, where a fixed truncation order is studied.

A5.6 Final comments

This paper addresses the case where the eigenvectors of C are known, in relation to the asymptotic ef-
ficiency and equivalence of ρ̂j,T and ρ̃−j,T , and the associated plug-in predictors. However, as shown in the
simulation study undertaken in Álvarez-Liébana et al. [2017], a similar performance is obtained in the case
where the eigenvectors ofC are unknown (see also Bosq [2000] in relation to the asymptotic properties of
the empirical eigenvectors ofC).

In the cited references in the ARH(1) framework, the autocorrelation operator is usually assumed to
belong to the Hilbert–Schmidt class. Here, in the absence of the compactness assumption (in particular, of
the Hilbert–Schmidt assumption) on the autocorrelation operator ρ, singular autocorrelation kernels can
be considered. As commented in the Section A5.1, the singularity of ρ is compensated by the regularity of
the autocovariance kernel of the innovation process, as reflected in Assumption A2B.
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Theorem A5.4.1 establishes sufficient conditions for the asymptotic efficiency and equivalence of the
proposed classical and Bayes diagonal componentwise parameter estimators of ρ, as well as of the associ-
ated ARH(1) plug-in predictors (see Theorem A5.4.2). The simulation study illustrates the fact that the
truncation order kT should be selected according to the rate of convergence to zero of the eigenvalues of the
autocovariance operator, and depending on the sample size T.Although, a fixed truncation order, indepen-
dently of T, has also been tested in Examples 1–2, where a compromise between the rate of convergence to
zero of the eigenvalues, and the rate of increasing of the sample sizes is found.

A5.7 SupplementaryMaterial: Bayesianestimationofreal–valuedautoregres-
sive processes of order one

In this section, we consider the Beta–prior–based Bayesian estimation of the autocorrelation coefficient
ρ in a standard AR(1) process. Namely, the generalized maximum likelihood estimator of such a parameter is
computed, when a beta prior is assumed for ρ. In the ARH(1) framework, we have adopted this estimation
procedure in the approximation of the diagonal coefficients {ρk, k ≥ 1} of operator ρ with respect to
{ϕk⊗ϕk, k ≥ 1}, in a Bayesian componentwise context. Note that we also denote byρ the autocorrelation
coefficient of an AR(1) process, since there is no place for confusion here.

Let {Xn, n ∈ Z} be an AR(1) process satisfying

Xn = ρXn−1 + εn, n ∈ Z,

where 0 < ρ < 1, and {εn, n ∈ Z} is a real–valued Gaussian white noise; i.e., εn ∼ N (0, σ2), n ∈ Z,
are independent Gaussian random variables, with σ > 0.Here, we will use the conditional likelihood, and
assume that (x1, . . . , xn) are observed for n sufficiently large to ensure that the effect of the random initial
condition is negligible. A beta distribution with shape parameters a > 0 and b > 0 is considered as a-priori
distribution on ρ, i.e., ρ ∼ B(a, b).Hence, the distribution of (x1, . . . , xn, ρ) has density

L̃ =
1

(σ
√
2π)n

exp

(
− 1

2σ2

n∑
i=1

(xi − ρxi−1)
2

)
ρa−1(1− ρ)b−11{0<ρ<1}

B(a, b)
,

where
B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)

is the beta function.
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We first compute the solution to the equation

0 =
∂ ln L̃

∂ρ
=

∂

∂ρ

[
− 1

2σ2

n∑
i=1

(xi − ρxi−1)
2 + (a− 1) ln ρ+ (b− 1) ln(1− ρ)

]

= − 1

2σ2

n∑
i=1

(−2xi−1(xi − ρxi−1)) +
a− 1

ρ
− b− 1

1− ρ

=
αn
σ2

− ρ

σ2
βn +

a− 1

ρ
− b− 1

1− ρ
,

where

αn =
n∑
i=1

xi−1xi, βn =
n∑
i=1

x2i−1.

Thus, the following equation must be solved:

0 =
ρ(1− ρ)αn

σ2
− ρ2(1− ρ)

σ2
βn + (a− 1)(1− ρ)− ρ(b− 1)

0 =
βn
σ2
ρ3 − αn + βn

σ2
ρ2 +

(αn
σ2

− [a+ b] + 2
)
ρ+ (a− 1).

Case 1 Considering a = b = 1, and σ2 = 1,we obtain the solution

ρ̃n =

n∑
i=1

xi−1xi

n∑
i=1

x2i−1

.
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Case 2 The general case where b > 1 is more intricate, since the solutions are ρ̃n = 0, and

ρ̃n =
1

2βn

[
(αn + βn)±

√
(αn − βn)2 − 4βnσ2[2− (a+ b)]

]

=

n∑
i=1

xi−1xi + x2i−1

2
n∑
i=1

x2i−1

±

√√√√[ n∑
i=1

xi−1xi − x2i−1

]2
− 4σ2

[
n∑
i=1

x2i−1

]
[2− (a+ b)]

2
n∑
i=1

x2i−1

.

Case 3 For σ2 = a = 1,we have

ρ̃n =
1

2βn

[
(αn + βn)±

√
(αn − βn)2 − 4βn(1− b)

]
=

1

2
n∑
i=1

x2i−1

[
n∑
i=1

xi−1xi + x2i−1

]

±

√√√√[ n∑
i=1

xi−1xi − x2i−1

]2
− 4

[
n∑
i=1

x2i−1

]
(1− b).

A5.8 SupplementaryMaterial 2: strong–ergodic AR(1) processes

This section collects some strong–ergodicity results applied in this paper, for real–valued weak–dependent
random sequences. In particular, their application to the AR(1) case is considered.

A real–valued stationary process{Yn, n ∈ Z} is strongly–ergodic (or ergodic in an almost surely sense),
with respect to E {f (Y0, . . . , Yn−1)} if, as n→ ∞,

1

n− k

n−1−k∑
i=0

f (Yi, . . . , Yi+k) −→a.s. E {f (Y0, . . . , Yn−1)} , k ≥ 0.

In particular, the following lemma provides sufficient condition to get the strong–ergodicity for all second–
order moments (see, for example, [Stout, 1974, Theorem 3.5.8] and [Billingsley, 1995, p. 495]).

286



LemmaA5.8.1 Let {ε̃n, n ∈ Z} be an i.i.d. sequence of real–valued random variables. If f : R∞ −→ R is
a measurable function, then

Yn = f (ε̃n, ε̃n−1, . . .) , n ∈ Z,

is a stationary and strongly–ergodic process for all second–order moments.

Lemma A5.8.1 is now applied to the invertible AR(1) case, when the innovation process is white noise.

Remark A5.8.1 If {Yn, n ∈ Z} is a real–valued zero–mean stationary AR(1) process

Yn = ρYn−1 + ε̃n, ρ ∈ R, |ρ| < 1, n ∈ Z,

where {ε̃n, n ∈ Z} is strong white noise, we can define the measurable (even continuous) function

f (a0, a1, . . .) =
∞∑
k=0

ρkak,

such that, from Lemma A5.8.1 and for each n ∈ Z,

Yn =
∞∑
k=0

ρkε̃n−k = f (ε̃n, ε̃n−1, . . .) ,

is a stationary and strongly–ergodic process for all second–order moments.

In the results derived in this paper, Remark A5.8.1 is applied, for each j ≥ 1, to the real–valued zero–
mean stationary AR(1) processes {

Xn,j = ⟨Xn, ϕj⟩H , n ∈ Z
}
,

with {Xn, n ∈ Z} now representing an ARH(1) process.

Corollary A5.8.1 Under Assumptions A1–A2, for each j ≥ 1, let us consider the real–valued zero–mean
stationary AR(1) process

{
Xn,j = ⟨Xn, ϕj⟩H , n ∈ Z

}
, such that, for each n ∈ Z

Xn,j = ρjXn−1,j + εn,j, ρj ∈ R, |ρj| < 1,

Here, {εn,j, n ∈ Z} is a real-valued strong white noise, for any j ≥ 1. Thus, for each j ≥ 1, {Xn,j, n ∈ Z} is
a stationary and strongly-ergodic process for all second-order moments. In particular, for any j ≥ 1, as n→ ∞,

Ĉn,j =
1

n

n∑
i=1

X2
i−1,j −→a.s. Cj = E

{
X2
i−1,j

}
, i ≥ 1,

D̂n,j =
1

n− 1

n∑
i=1

Xi−1,jXi,j −→a.s. Dj = E {Xi−1,jXi,j} , i ≥ 1.
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ABSTRACT

New results on strong–consistency, in the Hilbert–Schmidt and trace operator norms, are obtained, in the param-
eter estimation of an autoregressive Hilbertian process of order one (ARH(1) process). In particular, a strongly–
consistent diagonal componentwise estimator of the autocorrelation operator is derived, based on its empirical sin-
gular value decomposition.

A6.1 Introduction

There exists an extensive literature on FDA techniques. In the past few years, the primary focus of FDA
was mainly on i.i.d. functional observations. The classical book by Ramsay and Silverman [2005] provides a
wide overview on FDA techniques (e.g., regression, principal components analysis, linear modelling, canon-
ical correlation analysis, curve registration, and principal differential analysis). In Ferraty and Vieu [2006],
an introduction to nonparametric statistics techniques for FDA was provided. We also refer to the recent
monograph by Hsing and Eubank [2015], where the usual functional analysis tools in FDA are introduced,
addressing several statistical and estimation problems for random elements in function spaces. The mono-
graph by Horváth and Kokoszka [2012] is mainly concerned with inference based on second order statistics.
Its most significant feature is an in depth coverage of dependent functional data structures in time and space
(including functional time series, and spatially indexed functions).

We also refer to the reader to the methodological survey papers by Cuevas [2014], on the state of the art
in FDA, covering nonparametric techniques and discussing central topics in FDA. The Special Issue edited
by Goia and Vieu [2016] collects recent advances in the statistical analysis of high–dimensional data from
the parametric, semi–parametric and nonparametric FDA frameworks, covering, in particular, functional
autoregressive time series modelling, and statistical analysis techniques for spatial FDA.

A central issue in FDA is to take into account the temporal dependence of the observations. Although
the literature on scalar and vector time series is huge, there are relatively few contributions dealing with
functional time series. This fact is also reflected in [Rao et al., 2012, Chapter7], by Hörmann and Kokoszka
[2010], where a sort review of functional time series approaches is provided. The moment–based notion
of weak dependence introduced in Hörmann and Kokoszka [2010] is also accommodated to the statistical
analysis of functional time series, in this chapter. Indeed, this notion does not require the specification of
a data model, and can be used to study the properties of many non–linear sequences (see e.g., Berkes et al.
[2011] and Hörmann [2008] for recent applications).

Except for the linear model by Bosq [2000], for functional time series, no general framework has been
available in this context. The referred monograph by Bosq [2000] studies the theory of linear functional time
series, both in Hilbert and Banach spaces, focusing on the functional autoregressive model. Several authors
have studied the asymptotic properties of componentwise estimators of the autocorrelation operator of an
ARH(1) process, and of the associated plug-in predictors. We refer to Guillas [2001]; Mas [1999, 2004,
2007], where the efficiency, consistency and asymptotic normality of these estimators are addressed, in a
parametric framework (see also Álvarez-Liébana et al. [2016], on estimation of the Ornstein–Uhlenbeck
processes in Banach spaces, and Álvarez-Liébana et al. [2017], on weak consistency in the Hilbert–Schmidt
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operator norm of componentwise estimators). Strong–consistency is derived in the norm of the space of
bounded linear operators, in the monograph of Bosq [2000]. In the derivation of these results, the auto-
correlation operator is usually assumed to be a Hilbert–Schmidt operator, when the eigenvectors of the
autocovariance operator are unknown. This paper proves that, under basically the same setting of condi-
tions as in the cited papers, the componentwise estimator of the autocorrelation operator proposed in Bosq
[2000], based on the empirical eigenvectors of the autocovariance operator, is also strongly–consistent in
the Hilbert–Schmidt and trace operator norms.

The dimension reduction problem constitutes also a central topic in the parametric, nonparametric and
semi–parametric statistics for FDA. Special attention to this topic has been paid, for instance, in the con-
text of functional regression with functional response and functional predictors (see, for example, Ferraty
et al. [2012], where asymptotic normality is derived, and Ferraty et al. [2002], in the functional time series
framework). In the semi–parametric and nonparametric estimation techniques, a kernel–based formulation
is usually adopted. Real–valued covariates were incorporated in the novel semiparametric kernel–based pro-
posal by Aneiros-Pérez and Vieu [2008], providing an extension to the functional partial linear time series
framework (see also Aneiros-Pérez and Vieu [2006]). Motivated by spectrometry applications, a two–terms
Partitioned Functional Single Index Model is introduced in Goia and Vieu [2015], in a semi–parametric
framework. In the ARH(1) process framework, the present paper provides a new diagonal componentwise
estimator of the autocorrelation operator, based on its empirical singular value decomposition. Its strong–
consistency is proved as well. The diagonal design leads to an important dimension reduction, going beyond
the usual isotropic restriction on the kernels involved in the approximation of the regression operator (re-
spectively, autocorrelation operator), in the nonparametric framework.

The outline of the paper is the following. Appendix A6.2 introduces basic definitions and preliminary re-
sults. Appendix A6.3 derives strong–consistency of the estimator introduced in Bosq [2000], in the Hilbert–
Schmidt and trace operator norms. Appendix A6.4 formulates a strongly–consistent diagonal component-
wise estimator. The proofs of the results derived are given in the Supplementary Material in Appendix A6.5.

A6.2 Preliminaries

Let H be a real separable Hilbert space, and let X = {Xn, n ∈ Z} be a zero-mean ARH(1) process
on the basic probability space (Ω,A, P ) satisfying the following equation:

Xn(t) = ρ (Xn−1) (t) + εn(t), n ∈ Z, (A6.1)

where ρ is a bounded linear autocorrelation operator; i.e., ρ ∈ L(H), satisfying ∥ρk∥L(H) < 1, for k ≥ k0,
and for some k0.TheH-valued innovation process ε = {εn, n ∈ Z} is assumed to be a strong white noise,
and to be uncorrelated with the random initial condition. X then admits the MAH(∞) representation

Xn =
∞∑
k=0

ρk (εn−k) , n ∈ Z,

providing the unique stationary solution to equation (A6.1) (see Bosq [2000]).

293



The trace autocovariance operator of the ARH(1) processX is given by

C = E {Xn ⊗Xn} = E {X0 ⊗X0} ,

for n ∈ Z, and the empirical autocovariance operatorCn is defined as

Cn =
1

n

n−1∑
i=0

Xi ⊗Xi, n ≥ 2,

from a functional sample,X0, X1, . . . , Xn−1, of the ARH(1) processX.
In the following, we denote by {Cj, j ≥ 1} the sequence of eigenvalues of the autocovariance operator

C , satisfying
C(ϕj) = Cjϕj, j ≥ 1,

being {ϕj, j ≥ 1} the associated system of orthonormal eigenvectors. For n sufficiently large, we denote
by {Cn,j, j ≥ 1} the empirical eigenvalues, and by {ϕn,j, j ≥ 1} the empirical eigenvectors of Cn (see
[Bosq, 2000, pp. 102–103]), such that

Cnϕn,j = Cn,jϕn,j, j ≥ 1, Cn,1 ≥ · · · ≥ Cn,n ≥ 0 = Cn,n+1 = Cn,n+2 . . .

Consider now the nuclear cross–covariance operator and its empirical version

D = E {Xn ⊗Xn+1} = E {X0 ⊗X1} , Dn =
1

n− 1

n−2∑
i=0

Xi ⊗Xi+1, n ≥ 2.

The following assumption will appear in the subsequent developments.

Assumption A1. The random initial conditionX0 of the ARH(1) process in (A6.1) satisfies

∥X0∥H <∞, a.s.

TheoremA6.2.1 (See [Bosq, 2000,Theorem 4.1, Corollary 4.1 andTheorem 4.8]). IfE
{
∥X0∥4H

}
<∞, for

any β > 1
2
, as n→ ∞,

n1/4

(ln(n))β
∥Cn − C∥S(H) →

a.s. 0,
n1/4

(ln(n))β
∥Dn −D∥S(H) →

a.s. 0.

Under Assumption A1, and denoting almost surely identity by a.s.

∥Cn − C∥S(H) = O

((
ln(n)

n

)1/2
)
a.s., ∥Dn −D∥S(H) = O

((
ln(n)

n

)1/2
)
a.s.,

where ∥·∥S(H) is the Hilbert–Schmidt operator norm.
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We will also use the notation, for a truncation parameter kn,

Λkn = sup
1≤j≤kn

{
(Cj − Cj+1)

−1
}
, lim

n→∞
kn = ∞,

kn
n
< 1, kn ≥ 1. (A6.2)

A6.3 Strong–consistency in the trace operator norm

This section derives the strong–consistency of the componentwise estimator ρ̃kn , given in equation
(A6.3) below, in the trace and Hilbert–Schmidt operator norms. In Theorem A6.3.1 below, the following
lemma will be applied:

LemmaA6.3.1 Under Assumption A1, if

knΛkn = o

(√
n

ln(n)

)
,

then, for every x ∈ H, such that ∥x∥H ≤ 1, the following a.s. limit holds:∥∥∥∥∥ρ(x)−
kn∑
j=1

⟨ρ(x), ϕn,j⟩H ϕn,j

∥∥∥∥∥
H

→a.s. 0, n→ ∞.

The proof of this lemma is given in the Supplementary Material A6.5 provided below. The following
condition is assumed in the remainder of this section:

Assumption A2. The empirical eigenvalueCn,kn > 0 a.s,where kn is the truncation parameter satisfying
the conditions established in (A6.2).

Under Assumption A2, from a functional sample X0, . . . , Xn−1, let us consider the componentwise
estimator ρ̃kn of ρ (see [Bosq, 2000, Eq. (8.59), p. 218])

ρ̃kn(x) =
H

π̃knDnC
−1
n [π̃kn ]⋆(x)

=
H

kn∑
j=1

kn∑
p=1

⟨
DnC

−1
n (ϕn,j), ϕn,p

⟩
H
ϕn,p ⟨ϕn,j, x⟩H , ∀x ∈ H, (A6.3)

whereC−1
n is a bounded operator on span∥·∥H{ϕn,j, j = 1, . . . kn}.

TheoremA6.3.1 Thefollowing assertions hold: (i) UnderE
{
∥X0∥4H

}
<∞andAssumptionA2, consider

ρ ∈ L(H), and assumeΛkn in (A6.2) satisfies√
knΛkn = o

(
n1/4

(ln(n))β

)
, β > 1/2, n→ ∞.
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Then,
∥ρ̃kn − π̃knρ[π̃kn ]⋆∥1 →a.s. 0, n→ ∞, (A6.4)

where ρ̃kn is given in (A6.3), [π̃kn ]⋆ denotes the projection operator into the subspace

span∥·∥H{ϕn,j, j = 1, . . . kn} ⊆ H,

and π̃kn is its adjoint (the inverse). Here, for a trace operator K on H, ∥K∥1 represents the trace norm of K,
defined, for an orthonormal basis {φj, j ≥ 1} ofH, as

∥K∥1 =
∞∑
j=1

⟨√
K⋆K(φj), φj

⟩
H
.

(ii) Under Assumptions A1–A2, let us consider that knΛkn = o

(√
n

ln(n)

)
, if ρ is a trace operator, then,

∥ρ̃kn − ρ∥1 →a.s. 0, n→ ∞.

The proof of this result is given in the Supplementary Material A6.5.

Remark A6.3.1 Under Assumptions A1–A2, in the case where ρ is a Hilbert-Schmidt operator, and

knΛkn = o

(√
n

ln(n)

)
, β > 1/2, n→ ∞,

then
∥ρ̃kn − ρ∥S(H) →a.s. 0, n→ ∞,

since, from (A6.4) and Lemma A6.3.1, applying the Dominated ConvergenceTheorem,

∥ρ̃kn − ρ∥S(H) ≤ ∥ρ̃kn − π̃knρ[π̃kn ]⋆∥S(H) + ∥π̃knρ[π̃kn ]⋆ − ρ∥S(H) →a.s. 0, n→ ∞.

The strong consistency inH of the associated ARH(1) plug-in predictor ρ̃kn(Xn−1) ofXn then follows
(see also Bosq [2000] and the Supplementary Material A6.5).

A6.4 A strongly–consistent diagonal componentwise estimator

In this section, we consider the following assumption:

Assumption A3. Assume that C is strictly positive, i.e., Cj > 0, for every j ≥ 1, and D is a nuclear
operator such that ρ = DC−1 is compact.
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Under Assumption A3, ρ admits the singular value decomposition

ρ(x) =
H

∞∑
j=1

ρj ⟨x, ψj⟩H ψ̃j, ∀x ∈ H, (A6.5)

where, for every j ≥ 1,

ρ(ψj) = ρjψ̃j, ρj ∈ C,

being the singular value associated with the right and left eigenvectors ψj and ψ̃j, respectively. Note that,
sinceD is a nuclear operator, it also admits the singular value decomposition

D(x) =
H

∞∑
j=1

dj ⟨x, φj⟩H φ̃j, x ∈ H,

where {φj, j ≥ 1} and {φ̃j, j ≥ 1} are the right and left eigenvectors of D, and {dj, j ≥ 1} are its
singular values. Under conditions of Theorem A6.2.1, for n sufficiently large,Dn is also a nuclear operator,
admitting the singular value decomposition

Dn(x) =
H

∞∑
j=1

dn,j ⟨x, φn,j⟩H φ̃n,j, x ∈ H,

in terms of the right and left eigenvectors, {φn,j, j ≥ 1} and {φ̃n,j, j ≥ 1}, and the singular values
{dn,j, j ≥ 1}. Applying [Bosq, 2000, Lemma 4.2, p. 103],

sup
j≥1

|Cj − Cn,j| ≤ ∥C − Cn∥L(H) ≤ ∥C − Cn∥S(H) →a.s. 0, n→ ∞,

sup
j≥1

|dj − dn,j| ≤ ∥D −Dn∥S(H) →a.s. 0, n→ ∞.

(A6.6)

From (A6.6),DnC
−1
n is compact, for n sufficiently large, admitting the singular value decomposition

DnC
−1
n (x) =

n∑
j=1

ρ̂n,jψ̃n,j ⟨x, ψn,j⟩H , x ∈ H, (A6.7)

where DnC
−1
n (ψn,j) = ρ̂n,jψ̃n,j, for j = 1, . . . , n, with {ψn,j, j ≥ 1} and {ψ̃n,j, j ≥ 1} being the

empirical right and left eigenvectors of ρ.
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Remark A6.4.1 UnderAssumptionA3, and the conditions inTheoremA6.3.1 (ii) (respectively, inRemarkA6.3.1),
for n sufficiently large, we have

sup
x∈H:∥x∥H≤1

∥DnC
−1
n (x)−DC−1(x)∥H ≤ 2∥DnC

−1
n ∥L(H)

[
kn∑
j=1

∥ϕ′
n,j − ϕn,j∥H +

∞∑
j=kn+1

∥∥ϕ′
n,j

∥∥
H

]
+ ∥ρ̃kn −DC−1∥L(H) →a.s. 0, n→ ∞.

Thus,
∥DnC

−1
n −DC−1∥L(H) →a.s. 0, n→ ∞. (A6.8)

Indeed, underAssumptionA3, equation (A6.8) holds, if the conditions assumed in Bosq [2000] for the
strong–consistency of ρ̃kn in L(H) are satisfied. From Remark A6.4.1, and equations (A6.5) and (A6.7),
applying [Bosq, 2000, Lemma 4.2, p. 103],

sup
j≥1

|ρ̂n,j − ρj| ≤ ∥DnC
−1
n −DC−1∥L(H) →a.s. 0, n→ ∞.

Let us define the following quantity:

Λρkn = sup
1≤j≤kn

{(
|ρj|2 − |ρj+1|2

)−1
}
, (A6.9)

where kn is a truncation parameter satisfying (A6.2). We now apply the methodology of the proof of [Bosq,
2000, Lemma 4.3, p. 104; Corollary 4.3, p. 107], to obtain the strong–consistency of the empirical right and
left eigenvectors, {ψn,j, j ≥ 1} and {ψ̃n,j, j ≥ 1} of ρ, under the following additional assumption:

Assumption A4. Let us consider [
sup
j≥1

|ρj|+ sup
j≥1

|ρ̂n,j|
]
≤ 1.

LemmaA6.4.1 Under Assumptions A3–A4, and the conditions of Theorem A6.3.1(ii) (respectively the condi-
tions assumed in Remark A6.3.1), ifΛρkn in (A6.9) is such that

Λρkn = o

(
1

∥DnC−1
n −DC−1∥L(H)

)
,

then,

sup
1≤j≤kn

∥ψn,j − ψ′
n,j∥H →a.s. 0, sup

1≤j≤kn
∥ψ̃n,j − ψ̃′

n,j∥H →a.s. 0,
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where, for j ≥ 1, n ≥ 2,

ψ′
n,j = sgn ⟨ψn,j, ψj⟩H ψj ψ̃′

n,j = sgn
⟨
ψ̃n,j, ψ̃j

⟩
H
ψ̃j,

with sgn⟨ψn,j, ψj⟩H = 1⟨ψn,j ,ψj⟩H≥0−1⟨ψn,j ,ψj⟩H<0 and sgn⟨ψ̃n,j, ψ̃j⟩H = 1⟨ψ̃n,j ,ψ̃j⟩H≥0−1⟨ψ̃n,j ,ψ̃j⟩H<0.

The proof of this lemma is given in the Supplementary Material A6.5. The following diagonal compo-
nentwise estimator ρ̂kn of ρ is formulated:

ρ̂kn(x) =
kn∑
j=1

ρ̂n,j ⟨x, ψn,j⟩H ψ̃n,j, x ∈ H,

where, as before, kn is a truncation parameter satisfying the conditions assumed in Lemma A6.4.1. The next
result derives the strong–consistency of ρ̂kn .

TheoremA6.4.1 Under the conditions of Lemma A6.4.1, if

knΛ
ρ
kn

= o

(
1

∥DnC−1
n −DC−1∥L(H)

)
,

then,
∥ρ̂kn − ρ∥L(H) →a.s. 0, n→ ∞.

The proof of this result is given in the Supplementary Material A6.5.

A6.5 SupplementaryMaterial

The proofs of the results derived above are given in this supplementary material.

Proof of Lemma A6.3.1.

Proof. Let us denote ϕ′
n,j = sgn⟨ϕj, ϕn,j⟩Hϕj, where sgn⟨ϕj, ϕn,j⟩H = 1⟨ϕj ,ϕn,j⟩H≥0 − 1⟨ϕj ,ϕn,j⟩H<0.

For everyx ∈ H, such that ∥x∥H ≤ 1, applying the triangle and Cauchy–Schwarz’s inequalities, we obtain,
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as n→ ∞,∥∥∥∥∥
kn∑
j=1

⟨ρ(x), ϕn,j⟩H ϕn,j − ρ(x)

∥∥∥∥∥
H

≤

∥∥∥∥∥
kn∑
j=1

⟨ρ(x), ϕn,j⟩H ϕn,j −
⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

+

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

=

∥∥∥∥∥
kn∑
j=1

⟨ρ(x), ϕn,j⟩H (ϕn,j − ϕ′
n,j) +

⟨
ρ(x), ϕn,j − ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

+

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

≤
kn∑
j=1

∣∣⟨ρ(x), ϕn,j⟩H∣∣ ∥ϕn,j − ϕ′
n,j∥H

+
∣∣∣⟨ρ(x), ϕn,j − ϕ′

n,j

⟩
H

∣∣∣ ∥∥ϕ′
n,j

∥∥
H
+

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

≤
kn∑
j=1

∥ρ∥L(H) ∥ϕn,j − ϕ′
n,j∥H + ∥ρ∥L(H) ∥ϕn,j − ϕ′

n,j∥H

+

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

= 2
kn∑
j=1

∥ρ∥L(H) ∥ϕn,j − ϕ′
n,j∥H

+

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

≤ 4
√
2 ∥ρ∥L(H) knΛkn∥Cn − C∥S(H) +

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H
ϕ′
n,j

∥∥∥∥∥
H

, (A6.10)

since, from [Bosq, 2000, Corollary 4.3, p.107],

sup
1≤j≤kn

∥ϕn,j − ϕ′
n,j∥H ≤ 2

√
2Λkn∥Cn − C∥S(H).

From (A6.10), under the condition

knΛkn = o

(√
n

ln(n)

)
,

applying Theorem A6.2.1, we obtain∥∥∥∥∥ρ(x)−
kn∑
j=1

⟨ρ(x), ϕn,j⟩H ϕn,j

∥∥∥∥∥
H

→a.s. 0, n→ ∞.
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Proof of Theorem A6.3.1.

Proof.
(i) Applying the Hölder and triangle inequalities, since ρ = DC−1 is bounded, from Theorem A6.2.1,
under

√
knΛkn = o

(
n1/4

(ln(n))β

)
, β > 1/2,

∥π̃knDnC
−1
n [π̃kn ]⋆ − π̃knDC−1[π̃kn ]⋆∥1

≤
√
kn∥π̃knDnC

−1
n [π̃kn ]⋆ − π̃knDC

−1[π̃kn ]
⋆∥S(H)

≤
√
kn∥π̃knDnC

−1
n [π̃kn ]⋆ − π̃knDC−1

n [π̃kn ]⋆∥S(H)

+
√
kn∥π̃knDC−1

n [π̃kn ]⋆ − π̃knDC
−1[π̃kn ]

⋆∥S(H)

=
√
kn∥π̃kn(Dn −D)C−1

n [π̃kn ]⋆∥S(H)

+
√
kn∥π̃knDC−1

[
CC−1

n Cn − CC−1Cn
]
C−1
n [π̃kn ]

⋆∥S(H)

≤
√
knC

−1
kn

[
∥D −Dn∥S(H) + ∥DC−1∥L(H)∥C − Cn∥S(H)

]
≤
√
knΛkn

[
∥D −Dn∥S(H) + ∥DC−1∥L(H)∥C − Cn∥S(H)

]
≤ K

√
knΛkn

[
∥C − Cn∥S(H) + ∥D −Dn∥S(H)

]
→a.s. 0, n→ ∞, (A6.11)

for ∥ρ∥L(H) ≤ K andK ≥ 1.Then,

∥ρ̃kn − π̃knρ[π̃kn ]⋆∥1 →a.s. 0, n→ ∞.

(ii) Under Assumptions A1–A2, from Theorem A6.2.1,

∥Cn − C∥S(H) = O

((
ln(n)

n

)1/2
)
a.s.,

∥Dn −D∥S(H) = O

((
ln(n)

n

)1/2
)
a.s..

Additionally, under knΛkn = o

(√
n

ln(n)

)
, from Theorem A6.2.1, it can then be proved, in a similar way

to the derivation of equation (A6.11), as n→ ∞,

∥π̃knDnC
−1
n [π̃kn ]⋆ − π̃knDC−1[π̃kn ]⋆∥1 →a.s. 0. (A6.12)

Let us now consider

∥ρ̃kn − ρ∥1 ≤ ∥ρ̃kn − π̃knρ[π̃kn ]⋆∥1 + ∥π̃knρ[π̃kn ]⋆ − ρ∥1. (A6.13)
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From equation (A6.12), the first term at the right-hand side of inequality (A6.13) converges a.s. to zero.
From Lemma A6.3.1, π̃knρ[π̃kn ]⋆ converges a.s. to ρ, in L(H), as n → ∞. Since ρ is trace operator, the
Dominated Convergence Theorem leads to

∥π̃knρ[π̃kn ]⋆ − ρ∥1 →a.s. 0, n→ ∞,

and
∥ρ̃kn − ρ∥1 →a.s. 0, n→ ∞.

�

Strong-consistency of the plug-in predictor

Corollary A6.5.1 Under the conditions ofTheorem A6.3.1 (ii),

∥ρ̃kn(Xn−1)− ρ(Xn−1)∥H →a.s. 0, n→ ∞.

Proof.
Let

∥X0∥∞,H = inf {c; P (∥X0∥H > c) = 0} <∞,

under Assumption A1. From Theorem A6.3.1 (ii) (see also Remark A6.3.1), we then have

∥ρ̃kn − ρ∥L(H) →a.s. 0, n→ ∞,

∥ρ̃kn(Xn−1)− ρ(Xn−1)∥H ≤ ∥ρ̃kn − ρ∥L(H)∥X0∥∞,H →a.s. 0, n→ ∞.

�

Proof of Lemma A6.4.1.

Proof.
Under Assumption A3, ρ⋆ρ, [DnC

−1
n ]⋆[DnC

−1
n ], ρρ⋆ and [DnC

−1
n ][DnC

−1
n ]⋆ are self–adjoint com-

pact operators, admitting the following diagonal spectral series representations inH :

ρ⋆ρ =
H

∞∑
j=1

|ρj|2ψj ⊗ ψj [DnC
−1
n ]⋆[DnC

−1
n ] =

H

n∑
j=1

|ρ̂n,j|2ψn,j ⊗ ψn,j, (A6.14)

ρρ⋆ =
H

∞∑
j=1

|ρj|2ψ̃j ⊗ ψ̃j DnC
−1
n [DnC

−1
n ]⋆ =

H

n∑
j=1

|ρ̂n,j|2ψ̃n,j ⊗ ψ̃n,j.
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From (A6.14), applying the triangle inequality,

∥ρ⋆ρ(ψn,j)− |ρj|2ψn,j∥H ≤ ∥ρ⋆ρ(ψn,j)− [DnC
−1
n ]⋆[DnC

−1
n ](ψn,j)∥H

+∥[DnC
−1
n ]⋆[DnC

−1
n ](ψn,j)− |ρj|2ψn,j∥H

≤ 2∥ρ⋆ρ− [DnC
−1
n ]⋆[DnC

−1
n ]∥L(H). (A6.15)

On the other hand,

∥ψn,j − ψ′
n,j∥2H =

∞∑
l=1

[
⟨ψn,j, ψl⟩H − sgn ⟨ψn,j, ψl⟩H ⟨ψj, ψl⟩H

]2
=
∑
l ̸=j

[
⟨ψn,j, ψl⟩H

]2
+
[
⟨ψn,j, ψj⟩H − sgn ⟨ψn,j, ψj⟩H

]2
=
∑
l ̸=j

[
⟨ψn,j, ψl⟩H

]2
+
[
1−

∣∣⟨ψn,j, ψj⟩H∣∣]2
=
∑
l ̸=j

[
⟨ψn,j, ψl⟩H

]2
+

∞∑
l=1

[
⟨ψn,j, ψl⟩H

]2 − 2
∣∣⟨ψn,j, ψj⟩H∣∣+ ∣∣⟨ψn,j, ψj⟩H∣∣2

≤ 2
∑
l ̸=j

[
⟨ψn,j, ψl⟩H

]2
.

Furthermore,

∥ρ⋆ρ(ψn,j)− |ρj|2ψn,j∥2H =
∞∑
l=1

[⟨
ψn,j, |ρl|2ψl

⟩
H
−
⟨
ψn,j, |ρj|2ψl

⟩
H

]2
≥ min

l ̸=j

∣∣|ρl|2 − |ρj|2
∣∣2∑

l ̸=j

[
⟨ψn,j, ψl⟩H

]2
≥ min

l ̸=j

∣∣|ρl|2 − |ρj|2
∣∣2 1
2
∥ψn,j − ψ′

n,j∥2H

≥ α2
j

1

2
∥ψn,j − ψ′

n,j∥2H , (A6.16)

where α1 = (|ρ1|2 − |ρ2|2), and

αj = min
{
|ρj−1|2 − |ρj|2, |ρj|2 − |ρj+1|2

}
, j ≥ 2.

From equations (A6.15) and (A6.16), we have

∥ψn,j − ψ′
n,j∥H ≤ aj∥ρ⋆ρ− [DnC

−1
n ]⋆[DnC

−1
n ]∥L(H), (A6.17)
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where a1 = 2
√
2(|ρ1|2 − |ρ2|2)−1, and

aj = 2
√
2max

{(
|ρj−1|2 − |ρj|2

)−1
,
(
|ρj|2 − |ρj+1|2

)−1
}
.

In a similar way, considering the operators ρρ⋆ and ρ̂kn ρ̂⋆kn instead of ρ⋆ρ and ρ̂⋆kn ρ̂kn , respectively, we
can obtain

∥ψ̃n,j − ψ̃′
n,j∥H ≤ aj∥ρρ⋆ − [DnC

−1
n ][DnC

−1
n ]⋆∥L(H). (A6.18)

From equations (A6.17)–(A6.18),

sup
1≤j≤kn

∥ψn,j − ψ′
n,j∥H ≤ 2

√
2Λρkn∥ρ

⋆ρ− [DnC
−1
n ]⋆[DnC

−1
n ]∥L(H)

sup
1≤j≤kn

∥ψ̃n,j − ψ̃′
n,j∥H ≤ 2

√
2Λρkn∥ρρ

⋆ − [DnC
−1
n ][DnC

−1
n ]⋆∥L(H).

(A6.19)

Since, under Assumption A4,

∥ρ⋆ρ− [DnC
−1
n ]⋆[DnC

−1
n ]∥L(H) ≤ ∥DnC

−1
n −DC−1∥L(H)

∥ρρ⋆ − [DnC
−1
n ][DnC

−1
n ]⋆∥L(H) ≤ ∥DnC

−1
n −DC−1∥L(H),

(A6.20)

we obtain from Remark A6.4.1, and (A6.19)–(A6.20), keeping in mind that

Λρkn = o

(
1

∥DnC−1
n −DC−1∥L(H)

)
,

then

sup
1≤j≤kn

∥ψn,j − ψ′
n,j∥H →a.s. 0, sup

1≤j≤kn
∥ψ̃n,j − ψ̃′

n,j∥H →a.s. 0, n→ ∞.

�

Proof of Theorem A6.4.1.

Proof. For every x ∈ H, such that ∥x∥H ≤ 1,we obtain

∥ρ̂kn(x)− ρ(x)∥H ≤ ∥ρ̂knΠ̃kn(x)− ρΠkn(x)∥H + ∥ρΠkn(x)− ρΠ̃kn(x)∥H
+ ∥ρΠ̃kn(x)− ρ(x)∥H = an(x) + bn(x) + cn(x),

where Π̃kn denotes the projection operator into the subspace ofH generated by {ψn,j, j ≥ 1}, and Πkn is
the projection operator into the subspace ofH generated by {ψj, j ≥ 1}.
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Consider first the term an(x). As given in Appendix A6.4 of the paper, under Assumption A3, from
[Bosq, 2000, Lemma 4.2, p. 103] (see also Remark A6.4.1),

sup
j≥1

|ρ̂n,j − ρj| ≤ ∥DnC
−1
n −DC−1∥L(H) →a.s. 0, n→ ∞. (A6.21)

Applying now the triangle and the Cauchy–Schwarz’s inequalities, from equations (A6.19) and (A6.21),
as n→ ∞,

an(x) = ∥ρ̂knΠ̃kn(x)− ρΠkn(x)∥H ≤
kn∑
j=1

|ρ̂n,j − ρj| ⟨x, ψn,j⟩H ∥ψ̃n,j∥H

+|ρj|
⟨
x, ψn,j − ψ′

n,j

⟩
H
∥ψ̃n,j∥H + |ρj|

⟨
x, ψ′

n,j

⟩
H
∥ψ̃n,j − ψ̃′

n,j∥H

≤
kn∑
j=1

|ρ̂n,j − ρj|+ |ρj|
[
∥ψn,j − ψ′

n,j∥H + ∥ψ̃n,j − ψ̃′
n,j∥H

]
≤ kn∥DnC

−1
n −DC−1∥L(H)

+kn∥ρ∥L(H)

[
2
√
2Λρkn∥ρ

⋆ρ− [DnC
−1
n ]⋆[DnC

−1
n ]∥L(H)

]
+kn∥ρ∥L(H)

[
2
√
2Λρkn∥ρρ

⋆ − [DnC
−1
n ][DnC

−1
n ]⋆∥L(H)

]
, (A6.22)

which converges a.s. to zero, under Assumption A4 (see also equation (A6.20)), since

knΛ
ρ
kn

= o

(
1

∥DnC−1
n −DC−1∥L(H)

)
. (A6.23)

Applying the triangle and Cauchy–Schwarz’s inequalities, from equation (A6.19), in a similar way to (A6.22),
under Assumption A4 and (A6.23), we obtain

bn(x) = ∥ρΠkn(x)− ρΠ̃kn(x)∥H ≤
kn∑
j=1

∥x∥H∥ψ′
n,j − ψn,j∥H |ρj|∥ψ̃′

n,j∥H

+∥x∥H∥∥ψn,j∥H
∥∥∥ρ(ψ̃′

n,j − ψ̃n,j

)∥∥∥
H

≤
kn∑
j=1

∥ψ′
n,j − ψn,j∥H |ρj|+ ∥ρ∥L(H)∥ψ̃′

n,j − ψ̃n,j∥H

≤ ∥ρ∥L(H)

kn∑
j=1

∥ψ′
n,j − ψn,j∥H + ∥ψ̃′

n,j − ψ̃n,j∥H →a.s. 0, n→ ∞.

In a similar way to the proof of Lemma A6.3.1, from (A6.19), under Assumption A4 and (A6.23), as
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n→ ∞,

cn(x) = ∥ρΠ̃kn(x)− ρ(x)∥H ≤ 2 ∥ρ∥L(H)

kn∑
j=1

∥ψn,j − ψ′
n,j∥H

+

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ψ′

n,j

⟩
H
ψ′
n,j

∥∥∥∥∥
H

→a.s 0. (A6.24)

Taking supremum inx ∈ H, such that ∥x∥H ≤ 1, from equations (A6.22)–(A6.24), we obtain the desired
result.

�

Acknowledgments

Thisworkhasbeensupported inpartbyprojectMTM2015–71839–P(co-fundedbyFeder funds),
of the DGI,MINECO, Spain.

306







A7
FUNCTIONALTIME SERIES: A REVIEWAND

COMPARATIVE STUDY

ÁLVAREZ-LIÉBANA, J.: Functional time series: a review and compara-
tive study. Stat. Science (under revision, 2018)

Year Categ. Cites Impact Factor (5 years) Quartil
2016 Statist. & Probab. 5095 3.441 Q1

309



ABSTRACT

Since the beginning, time series framework has played a key role in the analysis of temporally correlated data. Due to
the huge computing advances, data began to be gathered with an increasingly temporal resolution level, in amanner
that time series, valued in a function spaces, have become crucial. This paper intends to provide to the reader a
comprehensive overview about the main theoretically and computational aspects concerning the estimation and
prediction of functional time series. Particularly, we pay attention to the estimation and prediction results, derived
in both parametric and nonparametric frameworks, in the context of Hilbert–valued autoregressive processes of
order one (ARH(1) processes, withH being a Hilbert space). A componentwise estimator of the autocorrelation
operator of an ARH(1) process is also here formulated, such that its strong–consistency is proved. A comparative
study between different ARH(1) prediction approaches is developed in the simulation study undertaken, aimed at
illustrating to the beginners the behaviour and numerical aspects of the most used methodologies.

A7.1 Introduction

This paper presents an overview of the main estimation and prediction approaches, formulated in the
context of functional time series. Henceforth, we consider as function space a real separable Hilbert space
(H, ⟨·, ·⟩H), being ⟨·, ·⟩H its associated inner product. Our interest particularly relies on forecasting
continuous–time stochastic processes

ξ = {ξt, t ≥ 0} ,

which are turned into a set of zero–meanH–valued random variables

X = {Xn(t) := ξnδ+t, 0 ≤ t ≤ δ, n ∈ Z} ,

defined over a real interval [0, δ]. Namely, we will focus on the estimation and prediction of the zero–mean
Hilbertian autoregressive process of order one (ARH(1) process)

Xn (t) = ρ (Xn−1) (t) + εn (t) , Xn, εn ∈ H, ρ : H −→ H, t ∈ [0, δ] , n ∈ Z, (A7.1)

as a functional extension of the classical zero–mean AR(1) process

xn = axn−1 + ϵn, xn, ϵn, a ∈ R, n ∈ Z. (A7.2)

ARH(1) framework also arises as natural extension of the multivariate time series framework, going be-
yond the finite–dimensional structure of the state space, to the infinite–dimensional state space, since usually
separability is a required assumption. In general, a complete and separable normed space is considered, as
state space of the infinite dimensional random variable. In this case, the parametric space is usually a prod-
uct of suitable operator spaces, such that bounded linear operator space (correlation structure), Hilbert–
Schmidt operators or trace operators (covariance structure). In equation (A7.1), ρ denotes the bounded
and linear autocorrelation operator and ε = {εn, n ∈ Z} its H–valued innovation process. The well–
known moment–based estimator of a in (A7.2), when {ϵn, n ∈ Z} is assumed to be strong white noise,
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has usually been formulated as

â =

1
n−1

n−2∑
i=0

xixi+1

1
n

n−1∑
i=0

x2i

, n ≥ 2. (A7.3)

We address the approaches existing in the current literature concerning the functional estimation of ρ
in (A7.1). In fact, several functional extensions of the moment–based estimation achieved in (A7.3) has
already been proposed.

A7.1.1 Motivating the estimation and prediction of ARH(1) processes

Because of its high flexibility, the forecasting of functional time series framework is being crucial in a
wide range of applications. As an early precedent, prediction of electricity consumption in Bologna (Italy)
was studied in Cavallini et al. [1994], by applying the ARH(1) estimation methodology firstly proposed in
Bosq [1991] (see Section A7.1.2 below). In the context of medical data, the analysis of electrocardiograms,
by using an ARH(1) model, was performed in Bernard [1997]. Functional data depth framework was dealt
in Fraiman and Muniz [2001], and applied to Nasdaq 100 Index stock prices. Forecasting of sulfur dioxide
levels was addresed in de Castro et al. [2005], where the ARH(1) model was tested in comparison with
functional kernel techniques. Hyndman and Ullah [2007] formulated a robust forecasting approach of the
mortality and fertility rates. The stability of credit card transactions, issued by Vilnius Bank, and modelled
by an ARH(1) model, was tested in Horváth et al. [2010]. An application to the analysis of biomedical data,
such as white matter structures, was addressed in Sorensen et al. [2013]. A functional testing was proposed
in Reimherr and Nicolae [2014], to check the nullity of covariates such as treatment effects in medicine. We
also refer to Burfield et al. [2015]; Shang et al. [2016], where applications to chemical data and forecasting
population in UK have been developed, respectively. The analysis of European call options, in the framework
of functional autoregressive models, was developed in Liu et al. [2016]. Recently, Fischer et al. [2017] have
modelled how affects the engine idling of school buses on the amount of toxic particles, by using a Bayesian
functional time series framework. In addition, Functional Analysis of Variance (FANOVA), fromH–valued
correlated data, with spatial rectangular or circular supports, was developed in Álvarez-Liébana and Ruiz-
Medina [2017], where a fixed effect model, with an ARH(1) error term, is adopted. These developments
were applied to the analysis of Functional Magnetic Resonance Imaging (fMRI) techniques, such that at
each voxel (3–dimensional pixel), fMRI response depends on the external stimulus by convolution with a
hemodynamic response function.

A7.1.2 Background

As commented, the model displayed in (A7.1) was firstly introduced by Bosq [1991]. The functional es-
timation problem was addressed by a moment–based estimation, as a functional extension of (A7.3), of the
linear bounded autocorrelation operator, providing the least–squares functional predictor (ARH(1) pre-
dictor). As detailed below in Section A7.2, the projection into the theoretical and empirical eigenvectors
of the autocovariance operator is considered. Central limit theorems, formulated in Merlevède [1996a];
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Merlevède et al. [1997], have been applied to derive the asymptotic properties of ARH(1) parameter es-
timators and predictors. Close graph Theorem allowed Mas [1999] to derive a truncated componentwise
estimator of the adjoint of the autocorrelation operator. Enhancements to the model firstly established in
Bosq [1991], under the Hilbert–Schmidt assumption over the autocorrelation operator, were presented in
the comprehensive monograph by Bosq [2000]. Specifically, the asymptotic properties of the formulated
truncated componentwise parameter estimator of the autocorrelation operator, and of their associated plug–
in predictors, were derived. Improvements of the above–referred results were also provided in Mas [2000],
where an extra regularity condition on the inverse of the autocovariance operator was imposed, to obtain the
so–called resolvent class estimators (see Section A7.2 below). Efficiency of the componentwise estimator of
the autocorrelation operator proposed in Bosq [2000] was studied in Guillas [2001]. Asymptotic behaviour
of the ARH(1) estimators was analysed in Mas [2004, 2007] under weaker assumptions, such as the com-
pactness of the autocorrelation operator. Weak–consistency results, in the norm of Hilbert–Schmidt opera-
tors, have recently been proposed in Álvarez-Liébana et al. [2017], when the covariance and autocorrelation
operators admit a diagonal spectral decomposition, in terms of a common eigenvectors system, under the
Hilbert–Schmidt assumption of the autocorrelation operator. Alternative ARH(1) estimation techniques
were presented in Besse and Cardot [1996], where a spline–smoothed–penalized functional principal com-
ponent analysis (spline–smoothed–penalized FPCA), with rank constraint, was performed (see also Cardot
[1998]). A robust spline–smoothed–penalized FPCA estimator of the autocorrelation operator was also
discussed in Besse et al. [2000]. Statistical tests for the lack of dependence, in the context of linear processes
in function spaces, were derived in Kokoszka et al. [2008]. Change point analysis was applied to test the
stability and stationarity of an ARH(1) process, in Horváth et al. [2010, 2014], respectively. The case of the
autocorrelation operator depending on an unknown real–valued parameter has also been considered (see
Kara-Terki and Mourid [2016]). This scenario can be applied to the prediction of an Ornstein–Uhlenbeck
process, as performed in Álvarez-Liébana et al. [2016]. Ruiz-Medina and Álvarez-Liébana [2018a] recently
provide sufficient conditions for the strong–consistency, in the trace norm, of the autocorrelation operator
of an ARH(1) process, when it does not admit a diagonal spectral decomposition.

An extension of the classical ARH(1) to ARH(p) processes, with p greater than one, was proposed in
Bosq [2000]. An extended class of ARH(1) processes, known as ARHX(1) processes, by including exoge-
nous variables in their dependence structure, was firstly formulated in Guillas [2000], and subsequently
dealt by Damon and Guillas [2002, 2005]. The first derivatives of an ARH(1) process were considered in
Marion and Pumo [2004], as the exogenous variables to be included in the model, by introducing the so–
called ARHD(1) process. Conditional autoregressive Hilbertian processes of order one (CARH(1) pro-
cesses) were introduced in Guillas [2002], aimed at including exogenous information in a non–additive
way. Mourid [2004] considers the randomness of the autocorrelation operator by conditioning to each el-
ement of the sample space. Weakly dependent processes were analysed in Hörmann and Kokoszka [2010].
Hilbertian periodically correlated autoregressive processes of order one (PCARH(1) processes) have been
defined by Soltani and Hashemi [2011], and later extended to the Banach–valued context by Parvardeh et
al. [2017]. Spatial extension of the classical ARH(1) models was firstly proposed in Ruiz-Medina [2011].
Their moment–based estimation was detailed in Ruiz-Medina [2012]. Recently, Ruiz-Medina and Álvarez-
Liébana [2017] have derived the asymptotic efficiency and equivalence of both, classical and Beta–prior–
based Bayesian diagonal componentwise ARH(1) parameter estimators and predictors, when the autocor-
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relation operator is not assumed to be a compact operator.

Concerning alternative bases, Grenander’s theory of sieves was adapted by Bensmain and Mourid [2001],
for the estimation of the autocorrelation operator of an ARH(1) process, from a Fourier–basis–based de-
composition in a finite dimensional subspace. Antoniadis and Sapatinas [2003] suggested three linear
wavelet–based predictors, two of them are built from the componentwise and resolvent estimators of the
autocorrelation operator, already established in Bosq [2000]; Mas [2000], respectively. Focusing on the
predictor, the idea of replacing the FPC with the directions more relevant to forecasting, by searching a
reduced–rank approximation, was firstly exhibited in Kargin and Onatski [2008]. As an extension of the
work by Hyndman and Ullah [2007], a weighted version of the FPLSR and FPCA approaches was estab-
lished in Hyndman and Shang [2009], with a decreasing weighting over time, as often, e.g., in demography.
For the purpose of taking into account the information coming from the dynamic dependence, which is
usually ignored in the FPCA literature, a dynamic functional principal components approach was simulta-
neously introduced by Hörmann et al. [2015]; Panaretos and Tavakoli [2013a].

Moving–average Hilbertian processes (MAH processes), and autoregressive and moving–average Hilber-
tian processes (ARMAH processes), can be defined as a particular case of Hilbertian general linear processes
(LPH). From the previous above–referred work by Bosq [1991], sufficient conditions for the invertibility of
LPH were provided in Merlevède [1995, 1996b]. A Markovian representation of a stationary and invertible
LPH, as well as a consistent plug–in predictor, was derived in Merlevède [1997]. The conditional central
limit theorem was extended to functional stochastic processes in Dedecker and Merlevède [2003], allow-
ing its application to LPH. The weak convergence for the empirical autocovariance and cross–covariance
operators of LPH was proved in Mas [2002]. Further results, that those one formulated in Bosq [2000]
for LPH, were obtained by Bosq [2007]; Bosq and Blanke [2007], where the study of a consistent predic-
tor of MAH processes was also addressed. Componentwise estimation of a MAH(1) process was studied
in Turbillon et al. [2008], under properly assumptions. Wang [2008] proposed a real–valued non–linear
ARMA model, in which functional MA coefficients were considered. An extensive literature has also been
developed concerning the Banach–valued time series framework. Nevertheless, Banach–valued context is
out of the scope of this paper, but new results developed in Ruiz-Medina and Álvarez-Liébana [2018b],
on the strong–consistency estimation and prediction of an ARB(1) process in the norm of bounded linear
operators on a Banach space, are strongly recommended.

A great amount of authors have been developed alternative nonparametric prediction techniques, in
both functional time series and functional regression frameworks, where the main goal is to forecast the pre-
dictable part of the paths. Besse et al. [2000] formulated a functional nonparametric kernel–based predictor
of an ARH(1) process. nonparametric methods were proposed in Cuevas et al. [2002], in the estimation of
the underlying linear operator of a functional linear regression, where both explanatory and response vari-
ables are valued in a function space. A two–steps prediction approach, based on a nonparametric kernel–
based prediction of the scaling coefficients, with respect to a wavelet basis decomposition, was firstly exhib-
ited in Antoniadis et al. [2006]. This method, also so–called kernel wavelet functional (KWF) method, was
improved in Cugliari [2011]. In the case where the response is a Hilbert–valued variable, and the explana-
tory variable takes its values in a general function space, equipped with a semi–metric, Ferraty et al. [2012]
obtained a nonparametric kernel estimator of the underlying regression operator.
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A7.1.3 Outline

The outline of this paper is as follows. References detailed in Sections A7.2–A7.6 are divided by thematic
areas in a chronicle. Section A7.2 is devoted to the study of the different ARH(1) componentwise estimation
frameworks, based on the projections into the theoretical and empirical eigenvectors of the autocovariance
operator. Section A7.3 deals improvements of the classical ARH(1) framework. Parametric forecasting of
functional time series, based on the projection into alternative bases, such as Fourier, B–spline or wavelet
bases, will be presented in Section A7.4. Section A7.5 studies MAH processes, as a particular case of LPH.
nonparametric techniques are described in Section A7.6. We formulate in Section A7.7 new results on the
strong–consistency of a truncated componentwise estimation, under a diagonal framework. In Section A7.8,
a comparative study is undertaken to illustrate the performance of some of the most used methodologies.
Specifically, the approaches presented in Section A7.7.1, as well as those ones in Antoniadis and Sapatinas
[2003]; Besse et al. [2000]; Bosq [2000]; Guillas [2001] are compared. Auxiliary results are provided in
the Supplementary Material (see Sections A7.9.1–A7.9.3), where the numerical results here obtained are
outlined as well (see Sections A7.9.3–A7.9.4 in the Supplementary Material provided).

A7.2 ARH(1) componentwise estimation, based on the eigenvectors of the au-
tocovariance operator

ARH(1) process introduced by Bosq [1991] seeks to extend the classical AR(1) model in (A7.2) to
functional data. In the sequel, let us consider zero–mean stationary processes. The ARH(1) process was
defined by

Xn(t) = ρ (Xn−1) (t) + εn(t), Xn, εn ∈ H, n ∈ Z, ρ ∈ L(H),

where L(H) is the space of bounded linear operators on H . If ε = {εn, n ∈ Z} is assumed to be a
H–valued strong white noise and uncorrelated with the initial condition,

∞∑
j=0

∥∥ρj∥∥2L(H)
<∞

is required to the stationarity condition. From the central limit theorems formulated in Merlevède [1996a];
Merlevède et al. [1997], the following asymptotic results for the autocovariance operator
C = E {Xn ⊗Xn}, for n ∈ Z, under

E
{
∥X0∥4H

}
<∞, ∥X0∥H <∞ (so–called Assumption A3),

were obtained in Bosq [1999a,b]:

∥Cn − C∥S(H) = O

((
ln(n)

n

)1/2
)
a.s., Cn =

1

n

n−1∑
i=0

Xi ⊗Xi, n ≥ 2,
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being S(H) the class of Hilbert–Schmidt operators on H . Since C is compact, from the close graph The-
orem, the adjoint of the autocorrelation operator ρ∗ = C−1D is bounded of the domain of C−1, which
is a dense subspace in H . Then, the autocorrelation operator can be built as ρ = (DC−1)

∗∗. Mas [1999]
provided the asymptotic normality of the formulated estimator of ρ∗, under

E
{∥∥C−1ε0

∥∥2
H

}
<∞,

by projecting into
Hkn = sp (ϕ1, . . . , ϕkn) ,

when the eigenvectors {ϕj, j ≥ 1} ofC are assumed to be known. Assumption

C1 > C2 > . . . > Cj > . . . > 0 (Assumption A1)

was imposed, where {Cj, j ≥ 1} denote eigenvalues ofC .
The asymptotic results formulated in Merlevède [1996a]; Merlevède et al. [1997] were also crucial in

the derivation of some extra asymptotic properties for C and D = E {Xn ⊗Xn+1} by Bosq [2000]. In
particular, under Assumption A3, for any β > 1/2,

n1/4

(ln(n))β
sup
j≥1

∥Cn − C∥S(H) −→ 0 a.s.,
n1/4

(ln(n))β
sup
j≥1

∥Dn −D∥S(H) −→ 0 a.s.,

was proved, being

Dn =
1

n− 1

n−2∑
i=0

Xi ⊗Xi+1

the empirical estimator of the cross–covariance operator, for each n ≥ 2. Under Assumptions A1 and
A3, as well as the Hilbert–Schmidt assumption over ρ, when a spectral decomposition ofCn is achieved in
terms of {Cn,j, j ≥ 1} and {ϕn,j, j ≥ 1}, the strong–consistency of the following non–diagonal estima-
tor ρ̃n(x) =

(
π̃knDnC

−1
n π̃kn

)
(x) was derived in the above–referred work:

ρ̃n(x) =
kn∑
l=1

ρ̃n,l(x)ϕn,l, ρ̃n,l(x) =
kn∑
j=1

C−1
n,j

(
1

n− 1

n−2∑
i=0

X̃i,n,jX̃i+1,n,l

)
⟨x, ϕn,j⟩H , (A7.4)

assuming that {ϕj, j ≥ 1} are unknown, with X̃i,n,j = ⟨Xi, ϕn,j⟩H , for any j ≥ 1 and i ∈ Z, being π̃kn

the orthogonal projector into H̃kn = sp (ϕn,1, . . . , ϕn,kn), for a suitable truncation parameter kn, such that

lim
n→∞

kn = ∞,
kn
n
< 1.

In the estimation approach formulated in equation (A7.4), the non–diagonal autocorrelation operator and
covariance operator of the error term are defined as follows:
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ρ (X) (t) =

∫ b

a

ψ (t, s)X(s)ds, ψ (t, s) =
∞∑
j=1

∞∑
h=1

ρj,hϕj(t)ϕh(s), (A7.5)

Cε =
∞∑
j=1

∞∑
h=1

σ2
j,hϕj ⊗ ϕh. (A7.6)

Besides the componentwise estimator ofρ∗, Mas [2000] proposed to approximateC by a linear operator
smoothed by a family of functions{

bn,p(x) =
xp

(x+ bn)
p+1 , p ≥ 0, n ∈ N

}
,

which converge to 1/x point–wise, being {bn, n ∈ N} a strictly positive sequence decreasing to zero. The
formulated estimators (so–called resolvent class estimators) ofρ∗ were given by Mas [2000] in the following
way:

ρ̂∗n,p = bn,p (Cn)D
∗
n, bn,p (Cn) = (Cn + bnIH)

−(p+1)Cp
n, p ≥ 0, n ∈ N,

being IH the identity operator on H , in a manner that bn,p (Cn) is a compact operator, for each p ≥ 1
and n ∈ N, with deterministic norm equal to b−1

n . Under the non–diagonal scenario in equations (A7.5)–
(A7.6), a similar philosophy was adopted by Guillas [2001], in the derivation of the efficiency of the com-
ponentwise estimator of ρ formulated in Bosq (2000), in ways thatCn was regularized by a sequence

u = {un, n ≥ 1} , 0 < un ≤ βCkn , 0 < β < 1.

Hence, let us defined

C−1
n,j,u =

1

max (Cn,j, un)
, j ≥ 1, n ≥ 2.

An efficient estimator, when {ϕj, j ≥ 1} are unknown, and under Assumptions A1 and A3, was stated in
Guillas [2001] by

ρ̃n,u(x) =
kn∑
l=1

(
kn∑
j=1

C−1
n,j,u

(
1

n− 1

n−2∑
i=0

X̃i,n,jX̃i+1,n,l

)
⟨x, ϕn,j⟩H

)
ϕn,l, (A7.7)

for a well–suited truncation parameter, providing the mean–square convergence. Remark that in equation
(A7.7), Hilbert–Schmidt condition over ρ is not needed. We may also cite Mas [2004], where the asymp-
totic properties, in the norm of L(H), of the estimator of ρ∗ formulated in Mas [1999], were derived, such
that the weaker condition of compactness of ρ was assumed. Assumptions A1 and A3, and conditions in
Mas [1999], were also required. This compactness condition, jointly with∥∥C−1/2ρ

∥∥
L(H)

<∞,
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i.e., ρ should be, at least, as smooth asC1/2, was also imposed in Mas [2007], where the weak–convergence
of the estimator of ρ∗ was addressed, under the convexity of the spectrum of C , when kn = o

(
n1/4

ln(n)

)
.

Álvarez-Liébana et al. [2017] recently established a weakly consistent diagonal componentwise estimator
of ρ, in the norm ofS(H), whenC and ρ admit a diagonal spectral decomposition in terms of {ϕj, j ≥ 1}.
The mean–square convergence of the following estimator of ρ, when eigenvectors of C are assumed to be
known and ρ is a symmetric operator, was proved, for a well–suited truncation parameter kn and n ≥ 2:

ρ̂kn =
kn∑
j=1

ρ̂n,jϕj ⊗ ϕj, ρ̂n,j =
D̂n,j

Ĉn,j
=

n

n− 1

n−2∑
i=0

Xi,jXi+1,j

n−1∑
i=0

X2
i,j

, Ĉn,j ̸= 0 a.s.,

under the strictly positiveness of C and extra mild assumptions. A diagonal strongly–consistent estimator
is formulated in Section A7.7, as well as a strongly–consistent plug–in predictor, when eigenvectors ofC are
unknown (see Sections A7.9.1–A7.9.2 in the Supplementary Material provided, concerning the case when
eigenvectors ofC are known).

Alternative ARH(1) estimation parametric techniques, based on a modified version of the functional
principal component analysis (FPCA) framework above–referred, have been developed. A spline–smoothed–
penalized FPCA, with rank constraint, was presented in Besse and Cardot [1996] (and later applied by Besse
et al. [2000], on the forecasting of climatic variations). In that work, the paths were previously smoothed
solving the following nonparametric optimization problem:

min
X̂q,ℓ

i ∈Hq

{
1

np

n−1∑
i=0

p∑
j=1

(
Xi(tj)− X̂q,ℓ

i (tj)
)2

+ ℓ
∥∥∥D2X̂q,ℓ

i

∥∥∥2
L2([0,1])

}
, (A7.8)

being ℓ the penalized parameter and {tj, j = 1, . . . , p} the set of knots. The q–dimensional subspace

Hq ⊂
{
f :

∥∥D2f
∥∥2
L2([0,1])

<∞
}

is spanned by
{A (ℓ) vj, j = 1, . . . , q} ,

being A (ℓ) the smoothing hat–matrix and {vj, j = 1, . . . , q} the eigenvectors associated to the first
q–largest eigenvalues of the matrix

S =
1

n
A (ℓ)1/2X ′InXA (ℓ)1/2 .

Estimator of ρwas then built in Besse and Cardot [1996] by ρ̂q,ℓ = D̂q,ℓĈ
−1
q,ℓ , with

Ĉq,ℓ =
1

n

n−1∑
i=0

X̂q,ℓ
i ⊗ X̂q,ℓ

i , D̂q,ℓ =
1

n− 1

n−2∑
i=0

X̂q,ℓ
i ⊗ X̂q,ℓ

i+1.
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See also Cardot [1998], where a spline–smoothed–penalized FPCA was achieved into the Sobolev space
H2

2 ([0, 1]), providing a consistent componentwise truncated estimator of ρ of an ARH(p) process.
Based on the perturbation theory, Mas and Menneteau [2003b] proved how the asymptotic behaviour

of a self–adjoint random operator is equivalent to that of its associated eigenvectors and eigenvalues. The
results derived in Mas and Menneteau [2003a] are completed by Menneteau [2005], focusing on the law
of the iterated logarithm, under the above–referred ARH(1) framework. In a more general framework, the
lack of dependence of a functional linear model was tested in Kokoszka et al. [2008], under Assumptions
A1,A3 and the asymptotic properties ofCn derived in Bosq [2000]. As discussed in Kokoszka et al. [2008],
their approach can be adapted to the ARH(1) framework, and therefore, the nullity of the autocorrelation
operator can be tested. In the above–referred works, the null hypotheses of the constancy of ρ and the
stationarity condition have implicitly been assumed. Horváth et al. [2014] derived testing methods on the
stationarity of functional time series (against change point alternative and the so–called two alternatives
integrated and deterministic trend). The asymptotic normality of the empirical principal components of a
wide class of functional stochastic processes (even non–linear weakly dependent functional time series) was
derived in Kokoszka and Reimherr [2013a].

A7.3 Extensions of the classical ARH(1) model

Enhancements to the classical ARH(1) model have been developed during the last decades. A great
amount of them will be detailed in this Section, arranging the references in chronicle by blocks.

From the previous asymptotic results, the natural extension of ARH(1) to ARH(p) processes, with p
greater than one, was presented in Bosq [2000] as

Xn =

p∑
k=1

ρk (Xn−k) + εn, n ∈ Z,

and ρk ∈ L(H), for any k = 1, . . . , p, being ρp a non–null operator on H . By its Markovian properties,
ARH(p) model was rewritten by Bosq [2000] as theHp–valued ARH(1) process

Yn = ρ′ (Yn−1) + ε′n, Yn = (Xn, . . . , Xn−p+1) ∈ Hp, ε′n = (εn, 0, . . . , 0) ∈ Hp

and

ρ′ =




ρ1 ρ2 . . . ρp−1 ρp
IH 0H . . . 0H 0H

...
... . . . ...

...
0H 0H . . . IH 0H −→ p-th row

∈ L(Hp),

whereHp denotes the cartesian product of p copies ofH , being a Hilbert space endowed with ⟨·, ·⟩p. In the
equation above, IH and 0H denote the identity and null operators onH , respectively. The crucial choice of
the lag order pwas discussed in Kokoszka and Reimherr [2013b], when ρk ∈ S(H), for any k = 1, . . . , p,
and∥ρ′∥L(Hp) < 1. The following multistage testing procedure was proposed in the mentioned work, based
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on the estimation of the operators ρk, for each k = 1, . . . , p:

H0 : X is an i.i.d. sequence vs Hp−1 : X is an ARH(1) process,
Hp−1 : X is an ARH(p-1) process vs Hp : X is an ARH(p) process,

in a manner that the method continues while a null hypothesis is not be rejected.
Aimed at including exogenous information in the dependence structure, ARH(1) processes with ex-

ogenous variables (ARHX(1) processes) were introduced in Damon and Guillas [2002]; Guillas [2000], as
follows:

Xn = ρ (Xn−1) +

p∑
k=1

ak (Zn,k) + εn, n ∈ Z, ak, ρ ∈ L(H), k = 1, . . . , p, (A7.9)

being Z = {Zn,k, n ∈ Z, k = 1, . . . , p} the exogenous variables. Guillas [2000] initally proposed an
autoregressive of order 1 inner dependence structure onZ (i.e., ak = 0H , for any k = 2, . . . , p), while the
ARH(p) structure displayed in (A7.9) was subsequently established in Damon and Guillas [2002, 2005].

The first derivatives of the random paths of an ARH(1) process were included by Marion and Pumo
[2004] as the exogenous variables (so–called ARHD(1) process), when the trajectories belong to the Sobolev
spaceH1

2 ([0, 1]). The ARH(1) process was given by

Xn = ρ (Xn−1) + Ψ
(
X ′
n−1

)
+ εn, n ∈ Z, ρ, Ψ ∈ K(H)

being K(H) the set of compact operator on H , and was reformulated by Mas and Pumo [2007] as the
ARH(1) process:

Xn = A (Xn−1) + εn, A = Φ+ΨD ∈ K(H), ∥A∥L(H) < 1, D (f) = f ′,

with

⟨f, g⟩W =

∫ 1

0

f(t)g(t)dt+

∫ 1

0

f ′(t)g′(t)dt, f, g ∈ W 2,1 ([0, 1]) .

After pointing out some extensions, where exogenous information has additively been incorporated,
Guillas [2002] proposed an i.i.d. sequence of Bernoulli variables

I = {In, n ∈ Z}

to condition an ARH(1) process, in a non–additive way. A conditional autoregressive Hilbertian process of
order one (CARH(1) process, also known as doubly stochastic Hilbertian process of order one) was then
formulated, for any n ∈ Z:

Xn = ρIn (Xn−1) + εn =

{
ρ0 (Xn−1) + εn, if In = 0

ρ1 (Xn−1) + εn, otherwise
, ρ0, ρ1 ∈ L(H). (A7.10)
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An extension of (A7.10), where the latent process was considered as a continuous multivariate process
V = {Vn, n ∈ Z}, was established in Cugliari [2013]. Mourid [2004] proposed to consider the random-
ness of ρ by defining it from a basic probability space (Ω,A,P) into L(H); i.e., ρω ∈ L(H), for each
ω ∈ Ω. ARH(p) processes with random coefficients (RARH(p) processes) were then introduced (see also
Allam and Mourid [2014]).

A new branch in the field of functional time series, when the data is gathered on a grid assuming a spatial
interaction, was firstly introduced by Ruiz-Medina [2011]. In that work, a novel family of spatial stochastic
processes (SARH(1) processes), which can be seen as the Hilbert–valued extension of spatial autoregressive
processes of order one (SAR(1) processes), was defined as follows:

Xi,j = R + ρ1 (Xi−1,j) + ρ2 (Xi,j−1) + ρ3 (Xi−1,j−1) + εi,j, (i, j) ∈ Z2, R ∈ H, (A7.11)

being ρh ∈ L(H), h = 1, 2, 3, and based on the so–called Markov property of the three points for a spatial
stochastic process. In (A7.11), ρh is assumed to be decomposed in terms of the eigenvalues {λk,h, k ≥ 1}
and the biorthonormal systems of left and right eigenvectors, {ψk, k ≥ 1} and {ϕk, k ≥ 1}, respectively,
for each h = 1, 2, 3. The spatial innovation process {εi,j, (i, j) ∈ Z2} is imposed to be a two–parameter
martingale difference sequence, with E {εi,j ⊗ εi,j} not depending on the coordinates (i, j) ∈ Z2. Ruiz-
Medina [2011] derived an unique stationary solution to the SARH(1) state equation (A7.11), providing
its inversion. Extended classes of models of functional spatial time series are also formulated in that paper.
Moment–based estimators of the functional parameters involved in the SARH(1) equation were proposed
in Ruiz-Medina [2012], where their performance is illustrated with a real data application, for spatial func-
tional prediction of ocean surface temperature.

A new set of sufficient conditions was provided in Ruiz-Medina and Álvarez-Liébana [2017] for the
asymptotic efficiency of diagonal componentwise estimators of the autocorrelation operator of a stationary
ARH(1) process, under both classical and Beta–prior–based Bayesian scenarios. In particular, under As-
sumptionA1,ρ is assumed to be linear bounded and self–adjoint operator, while the usual Hilbert–Schmidt
condition is not imposed. Stronger assumptions for the eigenvalues

{
σ2
j , j ≥ 1

}
of Cε = E {εn ⊗ εn}

were considered, to offset the slower decay rate of the eigenvalues {ρj, j ≥ 1} of ρ. Specifically, if

ρ =
∞∑
j=1

ρjϕj ⊗ ϕj , conditions

ρj =

√
1−

σ2
j

Cj
,

σ2
j

Cj
≤ 1,

σ2
j

Cj
= O

(
j−1−γ) , γ > 0, σ2

j = E
{
⟨εn, ϕj⟩2H

}
, j ≥ 1,

were assumed. The asymptotic equivalence of the estimators was also provided, as well as of the their as-

sociated plug–in predictors. The Beta–prior–based Bayesian estimator of ρ =
∞∑
j=1

ρ̃n,jϕj ⊗ ϕj was then

derived in Ruiz-Medina and Álvarez-Liébana [2017] as follows:

ρ̃n,j =
1

2βn,j

(
(αn,j + βn,j)−

√
(αn,j − βn,j)

2 − 4βn,jσ2
j (2− (aj + bj))

)
,
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with

αn,j =
n−1∑
i=0

Xi,jXi+1,j, βn,j =
n−1∑
i=0

X2
i,j, j ≥ 1, n ∈ Z,

being (aj, bj) the Beta parameters such that ρj ∼ B (aj, bj), for any j ≥ 1. We may also cite Ruiz-Medina
and Álvarez-Liébana [2018a], where sufficient conditions for the strong–consistency, in the trace norm, of
the above–formulated diagonal componentwise estimator of the autocorrelation operator of an ARH(1)
process, are provided. Note that, in that paper, ρ is not assumed to admit a diagonal spectral decomposition
with respect to the eigenvectors of the autocovariance operator C . See also Kowal et al. [2017], where a
two–level hierarchical model has recently been proposed on the prediction of an ARH(p) process, applied
to the forecasting of the U.S. Treasury nominal yield curve.

A7.4 ARH estimation approaches based on alternative bases

In this section, we pay attention to the ARH(1) estimation, based on the projection into alternative bases
to the eigenvectors ofC . The sieves method was adapted by Bensmain and Mourid [2001] for the estimation
of the autocorrelation operator of an ARH(1) process. A novel consistent estimator was derived under both
scenarios, when ρ is a bounded linear operator, and under the Hilbert–Schmidt condition. Specifically, ρ
was estimated considering different subsets (so–called sieves) {Θm, m ∈ N} of the parametric space Θ,
where ρ takes its values, equipped with a metric d, such that Θm is a compact set, with Θm ⊂ Θm+1 and∪
m∈N Θm is dense in Θ.

In particular, in the former case, when ρ is assumed to be a bounded linear operator

ρ (f) (t) =

∫ 1

0

K (t− x) f(x)dx,

depending on a kernelK (·), then

Xn (t) =

∫ 1

0

K (t− s)Xn−1 (s) ds+ εn (t) .

The Fourier basis{
ϕ2k(t) =

√
2 cos (2πkt) , ϕ2k+1(t) =

√
2 sin (2πkt) , k ≥ 1

}
and ϕ0 (t) = I[0,1] was considered, being I[0,1] the identity function over the interval [0, 1]. The ARH(1)
state equation was then developed as

a0 (Xn) = a0 (K) a0 (Xn−1) + a0 (εn) ,

ak (Xn) = (ak (K) ak (Xn−1)− bk (K) bk (Xn−1)) /2 + ak (εn)

bk (Xn) = (ak (K) bk (Xn−1) + bk (K) ak (Xn−1)) /2 + bk (εn)
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for each n ∈ Z and k ≥ 1, being

{ak (Xn) , ak (εn) , ak (K) , k ≥ 1} , {bk (Xn) , bk (εn) , bk (K) , k ≥ 1}

the Fourier coefficients respect to cosine and sine functions, respectively. Bensmain and Mourid [2001]
assumed that bk(t) = 0, for each t ∈ [0, 1] and k ≥ 0, in a manner that estimation of ρ was then reached
by forecasting the Fourier coefficients {ck = ak (K) , k ≥ 0} in the sieve

Θmn =

{
K(t) = c0I[0,1] +

mn∑
k=1

ck
√
2 cos (2πkt) ,

mn→∞∑
k=1

k2c2k ≤ mn

}
.

The non–diagonal componentwise estimator formulated in Bosq [2000] was used in Laukaitis and Rack-
auskas [2002], by considering regularized paths in terms of a B–spline basis. In that work, the forecasting of
the intensity of both cash withdrawal in cash machines (so–called automatic teller machines or ATM) was
achieved. Antoniadis and Sapatinas [2003] discussed how the prediction of functional stochastic processes
can be seen as a linear ill–posed inverse problem, providing a few approaches about the regularization tech-
niques required. In the context of 1–year–ahead forecasting of the climatological ENSO time series, they
also proposed three linear wavelet–basis–based ARH(1) predictors, one of which is based on the resolvent
estimators of ρ formulated in Mas [2000]. From the componentwise estimation framework developed in
Bosq [2000], they derived regularized wavelet estimators, by means of a previously wavelet–basis–based
smoothing method:

Ỹi,λ̂M = X̃i,λ̂M − 1

n

n−1∑
i=0

X̃i,λ̂M , X̃i,λ̂M =
2j0−1∑
k=0

α̂ij0kϕj0k +
J−1∑
j=j0

2j−1∑
k=0

β̂ijkψjk, (A7.12)

for any i ∈ Z, with smoothing parameter λ̂M =

(
M∑
j=1

σ2
j

)(
M∑
j=1

Cj

)
/N . The plug–in predictor was

given by

ρ̃n,λ̂M (Xn−1) =
kn∑
j=1

(
1

n− 1

kn∑
k=1

n−2∑
i=0

1

C̃n,λ̂M ,k

X̃n−1,λ̂M ,kỸi,λ̂M ,kỸi+1,λ̂M ,j

)
ϕ̃Mj , (A7.13)

with
X̃n−1,λ̂M ,j = ⟨ϕ̃Mj , Xn−1⟩H

and
Ỹi+1,λ̂M ,j = ⟨ϕ̃Mj , Ỹi+1,λ̂M ⟩H ,

for each j = 1, . . . , kn and i = 0, . . . , n− 1, where{
C̃n,λ̂M ,j, j ≥ 1

}
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and {
ϕ̃Mj , j ≥ 1

}
denote the eigenvalues and eigenvectors, respectively, of the empirical estimator

C̃n,λ̂M =
1

n

n−1∑
i=0

Ỹi,λ̂M ⊗ Ỹi,λ̂M .

Values {
α̂ij0k, ϕj0k, k = 0, . . . , 2j0 − 1

}
and {

β̂ijk, ψjk, j ≥ j0, k = 0, . . . , 2j − 1
}
,

for i = 0, . . . , n− 1, in equation (A7.12), denote the scaling coefficients, at J − j0 resolutions levels, for
a primary resolution level j0 < J . Assumptions A1 and A3 were imposed, along with

nC4
kn → ∞,

1

n

kn∑
j=1

bj
C2
j

→ 0, bj = max
(
(Cj−1 − Cj)

−1 , (Cj − Cj+1)
−1) . (A7.14)

Hyndman and Ullah [2007] detailed an alternative robust version of FPCA, avoiding the instability in-
duced by outlying observations. Forecasting of mortality and fertility rates was there performed. A weighted
version of the approach presented in the mentioned work by Hyndman and Ullah [2007], considering the
largest weights for the most recent data (required in fields such as demography), was developed in Hyndman
and Shang [2009]. Instead of the curve–by–curve forecasting established in Hyndman and Shang [2009];
Hyndman and Ullah [2007], a multivariate VARMA model was applied by Aue et al. [2015], to avoid the
loss of information invoked by the uncorrelated assumption of FPC scores.

In addition, Kargin and Onatski [2008] focused on the ARH(1) predictor, instead of on the operators
ρ and C themselves. They proposed to replace the FPC with directions more relevant to forecasting, by
searching a reduced–rank approximation (see also Didericksen and Kokoszka [2012], where a comparative
study, between approaches in Bosq [2000] and Kargin and Onatski [2008], was carried out). Their method,
so–called predictive factor decomposition, is built by searching of a minimal operator ρ ∈ Rp, aimed to
minimize

E
{
∥Xn − ρ (Xn−1)∥2H

}
,

beingRp the set of p–rank operator. The predictor was then given by

X̂n =

p∑
l=1

⟨Xn−1, b̂
α
l ⟩HDnb̂

α
l , b̂αl = αx̂αl +

K∑
j=1

⟨x̂αl , ϕn,j⟩H
C

1/2
n,j

ϕn,j, l = 1, . . . , p,

being {x̂αl , l = 1, . . . , p} a linear combination of the eigenvectors {ϕn,j, j = 1, . . . , p} of the empirical
autocovariance operator.
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A7.5 Hilbert–valued general linear processes

This section is devoted to describe the main contributions in the field of Hilbertian moving–average
processes (MAH processes), including the general case of Hilbertian general linear processes (LPH). The
case of ARMAH processes is considered as well. From the Wold decomposition of a LPH

Xn = εn +
∞∑
k=1

ak (εn−k) , n ∈ Z, ak ∈ L(H), k ≥ 1,

the stationarity is held as long as ε = {εn, n ∈ Z} is aH–valued SWN and

∞∑
k=1

∥ak∥2L(H) <∞.

Building on the early works by Bosq [1991], the invertibility of LPH was proved in Merlevède [1995] if and
only if

1−
∞∑
j=1

zj ∥aj∥L(H) ̸= 0, |z| < 1.

Merlevède [1997] provided a Markovian representation of stationary and invertible LPH in a subspace

Hβ =

{
X : ∥X∥Hβ

=
∞∑
k=1

βk ∥Xk∥2H <∞

}
, β = {βk > 0, k ≥ 1} ,

∞∑
k=1

βk <∞,

being β a decreasing sequence. Let us define theHβ–random variables Yn = (Xn, Xn−1, . . . , Xn−p, . . .)
′

anden = (εn, 0, 0, . . .)
′, for eachn ∈ Z. A strongly–consistent plug–in predictor was derived in Merlevède

[1997], by estimating

R =




ρ1 ρ2 . . . ρp . . .
IH 0H . . . 0H . . .

...
... . . . ... . . .

0H 0H . . . IH . . . −→ p–th row
...

... . . . ... . . .

beingR ∈ L (Hβ), under
∥R∥L(Hβ)

< 1, E
{
∥Y0∥4Hβ

}
<∞.

Mas [2002] studied weak–convergence for the empirical autocovariance and cross–covariance opera-
tors of LPH.
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MAH(q) and ARMAH(p,q) processes, with p and q greater than one, as a particular case of LPH, were
defined in Bosq and Blanke [2007] as

Xn = εn +

q∑
k=1

lk (εn−k) , lk ∈ L(H), ∥lk∥L(H) < 1,

and

Xn = εn +

p∑
j=1

ρj (Xn−j) +

q∑
k=1

lk (εn−k) , lk, ρj ∈ L(H),

respectively, for each n ∈ Z and k = 1, . . . , q, j = 1, . . . , p, with ∥lk∥L(H) < 1, ∥ρj∥L(H) < 1. LPH
in a wide sense, when {aj, j ≥ 1} are allowed to be unbounded, were studied in Bosq [2007]; Bosq and
Blanke [2007]. Unlike the estimation of an ARH(1) process, troubles in the estimation of the operator l of
a MAH(1) process arise from the non–linear behaviour of the moment equation. We may cite Turbillon et
al. [2008], where the estimation of the MAH(1) model

Xn = εn + l (εn−1) , l ∈ K(H)

under ∥∥DC−1
∥∥
L(H)

< 1/2,
∥∥D∗C−1

∥∥
L(H)

< 1/2,

was reached. A special framework was introduced in Wang [2008], where a real–valued non–linear
ARIMA(p,d,q) model was modified, in a manner that functional MA coefficients were included:

Xn +

p∑
j=1

ρjXn−j = εn +

q∑
k=1

fk (Xn−k−d) εn−k, n ∈ Z, (A7.15)

being{fk, k ≥ 1} a set of arbitrary univariate functions. Forecasting of the Chinese Consumer Price Index,
which monthly collects prices paid by middle–class consumers for a standard basket of goods and services,
was achieved in Chen et al. [2016], adopting smooth functions as functional MA coefficients in equation
(A7.15). Furthermore, a survey about the asymptotic properties of LPH, derived in the above–referred
works by Merlevède [1995, 1996a, 1997], was achieved in Bosq [2000]; Bosq and Blanke [2007]. Useful
tools proposed by Hyndman and Shang [2008], such as visualization and outlier detection, can be applied
to observed ARMAH processes, obeying a functional linear model. Outlier detection in French male age–
specific mortality data was also achieved in that work.

A7.6 Nonparametric functional time series framework

Lastly, let us see the main references in the context of nonparametric functional time series and func-
tional linear regression, when both explanatory and response variables, take values in a space of functions.

As a functional extension of the work by Poggi [1994], a nonparametric kernel–based predictor was
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formulated in Besse et al. [2000]

X̂hn
n =

n−2∑
i=0

X̂i+1K


∥∥∥X̂i −Xn−1

∥∥∥2
L2([0,δ])

hn


n−2∑
i=0

K


∥∥∥X̂i −Xn−1

∥∥∥2
L2([0,δ])

hn


, (A7.16)

being

X̂i = argmin
∥∥∥DX̂i

∥∥∥2
L2([0,δ1])

, i ∈ N,

K the usual Gaussian kernel and D a d–th order differential operator. Cuevas et al. [2002] addressed the
strong–consistency estimation of the underlying linear operator of a linear regression, when both explana-
tory and response variables are assumed to be H–valued random variables, with H = L2 ([0, δ1]). In
particular, the design is given by the triangular array

{Xi,n (t) , 1 ≤ i ≤ n} ,

providing the model

Yi,n = Ψ(Xi,n) + εi,n, Xi,n ∈ L2 ([0, δ1]) , Yi,n ∈ L2 ([0, δ2]) ,

under Ψ ∈ L (L2 ([0, δ1]) , L
2 ([0, δ2])).

Antoniadis et al. [2006] introduced (see also Antoniadis et al. [2012]), the two–steps prediction ap-
proach so–called kernel wavelet functional (KWF) method, where strongly–mixing conditions are imposed.
An expansion of stationary functional time series into a discrete wavelet basis

{
ψJk , k = 0, . . . , 2J − 1

}
,

at scale J , is achieved, and the forecasting of X̂n = E {Xn|Xn−1, . . . , X0}, for each n ∈ Z, was then
performed by

X̂J
n (·) =

2J−1∑
k=0

ξ̂Jn,kψ
J
k (·) , Ξ̂n =

n−2∑
i=0

K (D (P (Ξn) , D (P (Ξi))) /hn) Ξi+1

1/n+
n−2∑
i=0

K (D (P (Ξn) , D (P (Ξi))) /hn)

, (A7.17)

where
Ξ̂n =

{
ξ̂Jn,k : k = 0, 1, . . . , 2J − 1

}
denotes, for each n ∈ Z, the set of predicted scaling coefficients, at scale J , being P (Ξi) the set of wavelet
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coefficients derived by the so–called pyramid algorithm (more details can be found in Mallat [1989]),
for any i = 0, 1, . . . , n − 1. Distance D (·, ·) in (A7.17), for a two set of discrete wavelet coefficients{
θij,k, i = 1, 2

}
, at scale j = j0, . . . , J − 1 and location k = 0, . . . , 2j − 1, is given by

D
(
θ1, θ2

)
=

J−1∑
j=j0

2−j/2dj
(
θ1, θ2

)
, dj

(
θ1, θ2

)
=

2j−1∑
k=0

(
θ1j,k − θ2j,k

)21/2

.

Functional versions of partial least–squares regression and principal component regression (denoted as
FPLSR and FPCR, respectively) were formulated in Reiss and Ogden [2007]. In this work, a functional
smoothing–based approach to signal regression was adopted, where decompositions in terms of B–spline
bases and roughness penalties are involved. Let us now consider a general functional linear regression model,
when Hilbert–valued response and F–valued explanatory variables are considered, when F is defined as a
general function space, equipped with a semi–metric d and its associated topology
TF (X, t) = {X1 ∈ F : d (X1, X) ≤ t}. In this framework, a nonparametric kernel–based estimator of
the underlying regression operator was derived in Ferraty et al. [2012] as follows, for each i = 0, . . . , n−1:

Yi = Ψ(Xi) + ε, Ŷn = Ψ̂hn (Xn) , Ψ̂hn (Xn) =

n−2∑
i=0

Xi+1K

(
d (Xi, Xn−1)

hn

)
n−2∑
i=0

K

(
d (Xi, Xn−1)

hn

) ,

being K a Gaussian kernel (see also Ferraty and Vieu [2006], concerning the choice of a suitable
semi–metric d).

A7.7 ARH(1) strongly–consistent diagonal componentwise estimator

We here derive the conditions required on the strong–consistency of a componentwise estimator of ρ,
when it admits a diagonal spectral decomposition in terms of the common eigenvectors system{ϕj, j ≥ 1}.
In that case, an important dimension reduction is achieved. This spectral diagonalization can be reached un-
der a wide range of scenarios, leading to a sparse representation of kernels of the associated integral operators
(see more details in Ruiz-Medina and Álvarez-Liébana [2018a]. We assume that {ϕj, j ≥ 1} are unknown
(see Sections A7.9.1–A7.9.2 in the Supplementary Material provided, when {ϕj, j ≥ 1} are known).

A7.7.1 ARH(1) model: diagonal framework

As before, letX = {Xn, n ∈ Z} be a zero–mean stationary ARH(1) process on the basic probability
space (Ω,A, P ), satisfying:

Xn(t) = ρ (Xn−1) (t) + εn(t), ρ ∈ L(H), ∥ρ∥L(H) < 1, n ∈ Z, (A7.18)

when the H–valued innovation process ε = {εn, n ∈ Z} is assumed to be strong white noise, and to be
uncorrelated withX0, withσ2

ε = E {∥εn∥2H} <∞, for alln ∈ Z. In addition, let us consider the following
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assumptions:

Assumption A1. The autocovariance operatorC = E {Xn ⊗Xn} , for every n ∈ Z, is a strictly positive
and self–adjoint operator, in the trace class. Its eigenvalues {Cj, j ≥ 1} then satisfy

C1 > C2 > . . . > Cj > . . . > 0

and
∞∑
j=1

Cj <∞, C(f)(g) =
∞∑
j=1

Cj ⟨ϕj, f⟩H ⟨ϕj, g⟩H , ∀f, g ∈ H.

Assumption A2. The autocorrelation operator is a self–adjoint and Hilbert–Schmidt operator, admitting
the following diagonal spectral decomposition:

ρ(f)(g) =
∞∑
j=1

ρj ⟨ϕj, f⟩H ⟨ϕj, g⟩H ,
∞∑
j=1

ρ2j <∞, ∀f, g ∈ H,

where the set {ρj, j ≥ 1} denotes the eigenvalues of ρ,with respect to {ϕj, j ≥ 1}.

Under Assumptions A1–A2, the cross–covariance operator can be also diagonally decomposed, with
regard to the eigenvectors ofC , providing a set of eigenvalues{Dj = ρjCj, j ≥ 1}. Projections of (A7.18)
into {ϕj, j ≥ 1} lead to the stationary zero–mean AR(1) representation, under ∥ρ∥L(H) = sup

j≥1
|ρj| < 1:

Xn,j = ρjXn−1,j + εn,j, Xn,j = ⟨Xn, ϕj⟩H , εn,j = ⟨εn, ϕj⟩H , j ≥ 1, n ∈ Z.

A7.7.2 Diagonal strongly–consistent estimator: eigenvectors ofC are unknown

From model proposed in (A7.18), we can formally defined the autocorrelation operator as
ρ(x) = DC−1(x), for any x ∈ H . Nevertheless, it is well known that the operatorC cannot be inverted in
the whole domain. That is, an empirical estimator ofC must be computed. In the case of {ϕj, j ≥ 1} are
unknown, we can define an empirical estimator Cn, admitting a diagonal spectral decomposition in terms
of {Cn,j, j ≥ 1} and {ϕn,j, j ≥ 1}, satisfying, for each n ≥ 2:

Cn,1 ≥ · · · ≥ Cn,n > 0 = Cn,n+1 = Cn,n+2 = . . . , (A7.19)

Cn =
1

n

n−1∑
i=0

Xi ⊗Xi =
∞∑
j=1

Cn,jϕn,j ⊗ ϕn,j, (A7.20)

Cn,j =
1

n

n−1∑
i=0

X̃2
i,n,j, j ≥ 1. (A7.21)

In the following,
X̃i,n,j = ⟨Xi, ϕn,j⟩H , ϕ′

n,j = sgn ⟨ϕn,j, ϕj⟩H ϕj,
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for each i ∈ Z, j ≥ 1 and n ≥ 2, where sgn⟨ϕn,j, ϕj⟩H = 1⟨ϕn,j ,ϕj⟩H≥0 − 1⟨ϕn,j ,ϕj⟩H<0. Since
{ϕn,j, j ≥ 1} is a complete orthonormal, for each n ≥ 2, an empirical estimator Dn can be also formu-
lated, leading to the following non–diagonal representation:

Dn =
∞∑
j,l=1

D∗
n,j,lϕn,j ⊗ ϕn,l, D∗

n,j,l = ⟨Dn (ϕn,j) , ϕn,l⟩H =
1

n− 1

n−2∑
i=0

X̃i,n,jX̃i+1,n,l,

for each j, l ≥ 1 and n ≥ 2. Henceforth, we denote as Dn,j = ⟨Dn (ϕn,j) , ϕn,j⟩H . The following
assumption is here deemed, jointly with Assumption A3:

Assumption A4. Cn,kn > 0 a.s,where kn is a suitable truncation parameter kn < n, with lim
n→∞

kn = ∞.

From Assumption A4, a diagonal componentwise estimator is defined as

ρ̃kn =
kn∑
j=1

ρ̃n,jϕn,j ⊗ ϕn,j, ρ̃n,j =
Dn,j

Cn,j
=

n

n− 1

n−2∑
i=0

X̃i,n,jX̃i+1,n,j

n−1∑
i=0

X̃2
i,n,j

, j ≥ 1, n ≥ 2. (A7.22)

Under Assumptions A1–A4, the strong–consistency of the diagonal estimator ρ̃kn of ρ is proved in
Proposition A7.7.1 below. The large–sample behaviour of (A7.22) is numerically illustrated in Section
A7.9.4 of the Supplementary Material.

Proposition A7.7.1 Let kn be a truncation parameter, given under conditions mentioned in Assumption A4,
such that, for any β > 1

2
,

Λkn = o
(
n1/4(ln(n))β−1/2

)
,

1

Ckn

kn∑
j=1

aj = O
(
n1/4 (ln(n))−β

)
, (A7.23)

where
Λkn = sup

1≤j≤kn
(Cj − Cj+1)

−1,

and
a1 = 2

√
2

1

C1 − C2

, aj = 2
√
2max

(
1

Cj−1 − Cj
,

1

Cj − Cj+1

)
, 2 ≤ j ≤ kn.

Then, under Assumptions A1–A4,

∥ρ̃kn − ρ∥L(H) −→
a.s. 0, ∥ (ρ̃kn − ρ) (Xn−1)∥H −→a.s. 0, n→ ∞.
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In particular, the following upper bound can be derived:

∥ρ̃kn − ρ∥L(H) ≤ sup
1≤j≤kn

∣∣∣∣ρ̃n,j − Dn,j

Cj

∣∣∣∣+ sup
1≤j≤kn

∣∣∣∣Dn,j

Cj
− ρj

∣∣∣∣
+ 2

kn∑
j=1

|Dn,j|
Cj

∥∥ϕn,j − ϕ′
n,j

∥∥
H
+ sup

j>kn

|ρj| . (A7.24)

Proof. Under Assumptions A1–A2 and equation (A7.22), for any x ∈ H ,

∥ρ̃kn(x)− ρ(x)∥H ≤

∥∥∥∥∥
kn∑
j=1

ρ̃n,j⟨ϕn,j, x⟩Hϕn,j −
kn∑
j=1

ρj⟨ϕj, x⟩Hϕj

∥∥∥∥∥
H

+

∥∥∥∥∥
kn∑
j=1

ρj⟨ϕj, x⟩Hϕj −
∞∑
j=1

ρj⟨ϕj, x⟩Hϕj

∥∥∥∥∥
H

= akn(x) + bkn(x). (A7.25)

Clearly, under Assumption A2, lim
n→∞

bkn(x) = 0. Let us now study the behaviour of term akn(x).

From equations (A7.19)–(A7.22), under Assumption A4,

akn(x) ≤

∥∥∥∥∥
kn∑
j=1

(
Dn,j

Cn,j
− Dn,j

Cj

)
⟨ϕn,j, x⟩Hϕn,j

∥∥∥∥∥
H

+

∥∥∥∥∥
kn∑
j=1

Dn,j

Cj
⟨ϕn,j, x⟩Hϕn,j −

kn∑
j=1

ρj⟨ϕ
′

n,j, x⟩Hϕ
′

n,j

∥∥∥∥∥
H

= akn,1(x) + akn,2(x), (A7.26)

where ⟨ϕj, x⟩Hϕj = ⟨ϕ′
n,j, x⟩Hϕ

′
n,j , with, as before,

ϕ
′

n,j = sgn⟨ϕn,j, ϕj⟩Hϕj, sgn⟨ϕn,j, ϕj⟩H = 1⟨ϕn,j ,ϕj⟩H≥0 − 1⟨ϕn,j ,ϕj⟩H<0, j ≥ 1, n ≥ 2.

From equation (A7.26),

akn,1(x) ≤
kn∑
j=1

|Dn,j|
|Cj − Cn,j|
Cn,jCj

|⟨ϕn,j, x⟩H | ∥ϕn,j∥H

≤ ∥C − Cn∥L(H)

1

Ckn

kn∑
j=1

∣∣∣∣Dn,j

Cn,j

∣∣∣∣ |⟨ϕn,j, x⟩H | .
Thus, from Cauchy–Schwarz’s inequality (see also Remark A7.9.2 provided in the Supplementary Ma-
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terial),

akn,1(x) ≤ ∥C − Cn∥L(H)

1

Ckn

(
kn∑
j=1

D2
n,j

C2
n,j

)1/2( ∞∑
j=1

⟨ϕn,j, x⟩2H

)1/2

≤ 2 ∥C − Cn∥L(H)

1

Ckn
k1/2n ∥x∥H a.s. (A7.27)

UnderAssumptionA1, forn ≥ ñ0, kn < C−1
kn

, which implies that, from the definition of {aj, j ≥ 1}
(see Remark A7.9.4 provided in the Supplementary Material),

akn,1(x) ≤ 2 ∥C − Cn∥L(H)C
−3/2
kn

∥x∥H < 2 ∥C − Cn∥L(H) ∥x∥H C
−1/2
kn

kn∑
j=1

aj a.s. (A7.28)

From condition (A7.23), there also exists a positive real numberM < ∞ and an integer n0 such that,
for certain β > 1

2
and n ≥ n0, with n0 large enough,

C
−1/2
kn

kn∑
j=1

aj < C−1
kn

kn∑
j=1

aj ≤Mn1/4 (ln(n))−β . (A7.29)

From equations (A7.28)–(A7.29), for anyn ≥ max(ñ0, n0), sincex ∈ H and underAssumptionA3
(see Theorem A7.9.1 provided in the Supplementary Material),

akn,1(x) < 2M
n1/4

(ln(n))β
∥C − Cn∥L(H) ∥x∥H →a.s. 0, n→ ∞.

Concerning akn,2(x) in (A7.26), under Assumptions A1–A2 and Cauchy–Schwarz’s inequality (see
also Remark A7.9.2 provided in the Supplementary Material provided),

akn,2(x) ≤

∥∥∥∥∥
kn∑
j=1

Dn,j

Cj

(
⟨ϕn,j, x⟩H − ⟨ϕ′

n,j, x⟩H
)
ϕn,j

∥∥∥∥∥
H

+

∥∥∥∥∥
kn∑
j=1

Dn,j

Cj
⟨ϕ′

n,j, x⟩H
(
ϕn,j − ϕ

′

n,j

)∥∥∥∥∥
H

+

∥∥∥∥∥
kn∑
j=1

(
Dn,j

Cj
− ρj

)
⟨ϕ′

n,j, x⟩Hϕ
′

n,j

∥∥∥∥∥
H

≤ 2 sup
j≥1

|Cn,j|C−1
kn

kn∑
j=1

∣∣∣⟨ϕn,j − ϕ
′

n,j, x⟩H
∣∣∣ ∥ϕn,j∥H

331



+ 2 sup
j≥1

|Cn,j|C−1
kn

kn∑
j=1

∣∣∣⟨ϕ′

n,j, x⟩H
∣∣∣ ∥∥∥ϕn,j − ϕ

′

n,j

∥∥∥
H

+ sup
j≥1

|Dn,j −Dj|C−1
kn

∥∥∥∥∥
kn∑
j=1

⟨ϕ′

n,j, x⟩Hϕ
′

n,j

∥∥∥∥∥
H

a.s. (A7.30)

Hence, from Cauchy–Schwarz’s inequality,

akn,2(x) ≤ 2 sup
j≥1

|Cn,j| ∥x∥H C
−1
kn

kn∑
j=1

∥∥∥ϕn,j − ϕ
′

n,j

∥∥∥
H

+ 2 sup
j≥1

|Cn,j| ∥x∥H C
−1
kn

kn∑
j=1

∥∥∥ϕ′

n,j

∥∥∥
H

∥∥∥ϕn,j − ϕ
′

n,j

∥∥∥
H

+ sup
j≥1

|Dn,j −Dj| ∥x∥H C
−1
kn
. (A7.31)

Since, for n sufficiently large, from Theorem A7.9.1 included in the Supplementary Material provided,
and under Assumption A3,Cn admits a diagonal decomposition in terms of {Cn,j, j ≥ 1},

akn,2(x) ≤ 4 ∥Cn∥L(H) ∥x∥H C
−1
kn

kn∑
j=1

∥∥∥ϕn,j − ϕ
′

n,j

∥∥∥
H
+ sup

j≥1
|Dn,j −Dj| ∥x∥H C

−1
kn
a.s. (A7.32)

From results in [Bosq, 2000, Lemma 4.3],

akn,2(x) ≤ 4 ∥Cn∥L(H) ∥x∥H ∥Cn − C∥L(H)C
−1
kn

kn∑
j=1

aj +sup
j≥1

|Dn,j −Dj| ∥x∥H C
−1
kn
a.s. (A7.33)

On the one hand, from equation (A7.23), there exists a positive real number M < ∞ and an integer
n0 large enough such that, for certain β > 1

2
and n ≥ n0,

akn,2(x) ≤ 4M ∥Cn∥L(H) ∥x∥H ∥Cn − C∥L(H)

n1/4

(ln(n))β
+sup
j≥1

|Dn,j −Dj| ∥x∥H C
−1
kn
a.s. (A7.34)

On the other hand, for n large enough and any β > 1
2

,

akn,2(x) < M ∥x∥H
(
4 ∥Cn∥L(H) ∥Cn − C∥L(H) + sup

j≥1
|Dn,j −Dj|

)
n1/4

(ln(n))β
a.s. (A7.35)

Hence, since ∥Cn∥L(H) < ∞ and ∥x∥H < ∞, from Theorem A7.9.1 and Corollary A7.9.2 both
included in the Supplementary Material provided, from conditions (A7.23) and under Assumptions A1–
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A3,

akn,2(x) →a.s. 0, n→ ∞. (A7.36)

Taking supremum inx ∈ H,with∥x∥H = 1, at the left–hand side of equation (A7.25), from equations
(A7.26)–(A7.36), we obtain the desired result. Strong-consistency of the associated plug-in predictor is di-
rectly obtained, underAssumptionA3. The upper-bound in (A7.24) can be directly obtained from bkn(x),
akn,1(x) and akn,2(x), reflected in equations (A7.25)-(A7.26) and (A7.30).

�

When ρ does not admit a diagonal spectral representation, an almost sure upper bound for the error
∥ρ̃kn − ρ∥2S(H) is provided in Section A7.9.3 in the Supplementary Material provided, being ∥·∥2S(H) the
norm of the Hilbert-Schmidt operators onH .

A7.8 Comparative study: an evaluation of the performance

A comparative study is undertaken to illustrate the performance of the ARH(1) predictor formulated in
Section A7.7, and those ones given by Antoniadis and Sapatinas [2003]; Besse et al. [2000]; Bosq [2000];
Guillas [2001], under different diagonal, pseudo-diagonal and non-diagonal scenarios, when {ϕj, j ≥ 1}
are unknown. Additionally to the figures displayed in this section, more numerical results can also be found
in the tables included in Section A7.9.5 of the Supplementary Material provided.

In all of the scenarios considered, the autocovariance operatorC is defined as the inverse of a power of
the Dirichlet negative Laplacian operator on [0, δ]. Namely, the spectral decomposition ofC is determined,
in all of the scenarios, by

C(f)(g) =
∞∑
j=1

Cj⟨ϕj, f⟩H⟨ϕj, g⟩H , ϕj (x) =

√
2

δ
sin

(
πjx

δ

)
, Cj = c1j

−βC , (A7.37)

for f, g ∈ H = L2((0, δ)) and x ∈ (0, δ), being c1 a positive constant. In the remaining, we fix
(0, δ) = (0, 4). Concerning {Cj, j ≥ 1}, different rates βC will be regarded, such that AssumptionA1 is
directly held; i.e., βC > 1.

On the other hand, the coefficients corresponding to the spectral decomposition of ρ andCε (see equa-
tions (A7.5)-(A7.6) above), related to the tensorial product {ϕj ⊗ ϕh, j, h ≥ 1}, are given by

ρj,j = c2j
−βρ , σ2

j,j = Cj
(
1− ρ2j,j

)
, j ≥ 1,

with βρ = 11/10, and, for any j ̸= h, j, h ≥ 1,

ρj,h =


0, scenario D
e−|j−h|/W scenario PD
1
K

1
|j−h|2+1

scenario ND
, σ2

j,h =


0, scenario D
e−|j−h|2/W scenario PD
e−|j−h|2/W scenario ND
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for diagonal (D), pseudodiagonal (PD) and non-diagonal (ND) scenarios, being 1
K

= 0.275. Henceforth,
c2 is a constant in (0, 1), verifying Assumption A2.

A7.8.1 Large-sample behaviour of the ARH(1) plug-in predictors

Large-sample behaviour of the ARH(1) plug-in predictor formulated in Section A7.7.2, as well as those
ones in Bosq [2000]; Guillas [2001] (see equations (A7.4) and (A7.7) above, respectively), will be illus-
trated. ARH(1) plug-in predictors established in Section A7.7 will be only considered under diagonal sce-
narios.

As commented earlier (see equation (A7.4) above), Assumptions A1 and A3–A5, and the Hilbert-
Schmidt assumption of ρ, are required in the strong-consistency results by Bosq [2000]. Condition (A7.23)
was also imposed. From [Bosq, 2000, Example 8.6] conditions therein considered are held under any sce-
nario in which the truncation parameter kn = ⌈log(n)⌉ is adopted, under Assumptions A1–A4 (it can
be proved as condition (A7.23) is also verified when kn = ⌈log(n)⌉). In the formulation of mean-square
convergence, Guillas also considered Assumptions A1, A3 and A5. From [Guillas, 2001, Theorem 2 and
Example 4], if the regularization sequence above-referred (see equation (A7.7)) verifies

α
Cγ
kn

nϵ
≤ un ≤ βCkn , 0 < β < 1, α > 0, γ = 1, ϵ = 0,

then the mean-square consistency is achieved. Namely, if

kn = ⌈e′n1/(8δC+2)⌉, e′ = 17/10,

the rate of convergence in quadratic mean is of order of

n−δC/(4δC+1).

Since
⌈(17/10)n1/(8δC+2)⌉ < ⌈ln(n)⌉

for n large enough, condition (A7.23) is also verified when

kn = ⌈e′n1/(8δC+2)⌉.

For sample sizes nt = 35000 + 40000 (t− 1) , t = 1, . . . , 10, the error measure

F (kn, nt, β) =

(
N∑
l=1

1(ξnt,β
,∞)

(∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥kn
H

))
/N, (A7.38)

will be displayed (see Figures A7.8.1-A7.8.3 below), being1(ξnt,β
,∞) the indicator function over the interval

(ξnt,β,∞), where ξnt,β numerically fits the almost sure rate of convergence of
∥∥(ρ− ρlkn

) (
X l
n−1

)∥∥kn
H

. The
following diagonal subscenarios will be considered (see Figure A7.8.1), when the diagonal data generation
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is assumed, for

δρ = 11/10, nt = 35000 + 40000(t− 1), t = 1, . . . , 10, ξnt,β =
(ln(nt))

β

n
1/2
t

, β = 65/100

δC =

{
3/2 scenariosD1, D3

24/10 scenariosD2, D4

, kn =

{
⌈ln(n)⌉ scenariosD1, D2

⌈e′n1/(8δC+2)⌉ scenariosD3, D4

,

being e′ = 17/10. As discussed, conditions formulated in Bosq [2000] and Proposition A7.7.1 of the cur-
rent paper are held for scenariosD1-D2, while in scenariosD3-D4, the conditions assumed in Proposition
A7.7.1, Bosq [2000]; Guillas [2001] are verified. In the subscenariosD1-D4,

∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥kn
H

=

√√√√∫ b

a

(
kn∑
j=1

ρjX
l
n−1,n,jϕj(t)−

kn∑
j=1

ρln,j
(
X l
n−1

)
ϕln,j(t)

)2

dt, (A7.39)

is computed, beingρlkn
(
X l
n−1

)
the predictors defined in (A7.19)-(A7.22), (A7.4) and (A7.7), respectively,

for any j = 1, . . . , kn, and based on the l–th generation of the values X̃ l
i,n,j = ⟨X l

i , ϕ
l
n,j⟩H , for l =

1, . . . , N , withN = 500 simulations.
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Figure A7.8.1: F (kn, nt, β) values, for scenarios D2 (on left) and D4 (on right), for our approach (blue
star dotted line) and those one presented in Bosq [2000] (red circle line) and Guillas [2001] (black diamond
line). The curve ξnt,β = (ln(nt))

β

n
1/2
t

, with β = 65/100, is adopted.

Parameters δC and kn for pseudodiagonal scenarios (scenariosPD1-PD4) and non-diagonal scenarios
(scenariosND1-ND4) are fixed as done above for scenariosD1-D4, being

δ2 = 11/10, nt = 35000 + 40000(t− 1), t = 1, . . . , 10, ξnt,β = (ln(nt))
β n

−1/3
t .
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Values of β = 3/10 and β = 125/100 are distinguished for pseudodiagonal and non-diagonal scenarios
(see Figure A7.8.3), respectively. Note that, as discussed above, different values of

{
ρj,h, σ

2
j,h, j, h ≥ 1

}
are adopted for these cases. In fact, under pseudodiagonal and non-diagonal frameworks, the following
truncated norm is then computed, instead of (A7.70):√√√√∫ b

a

(∫ b

a

(
kn∑

j,k=1

ρj,kϕj(t)ϕk(s)

)
ds−

kn∑
j=1

ρln,j
(
X l
n−1

)
ϕln,j(t)

)2

dt. (A7.40)

Remark that PD1-PD2 and ND1-ND2 scenarios verify conditions required in Bosq [2000], while
scenarios PD3-PD4 andND3-ND4 are included in both setting of conditions.
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FigureA7.8.2: F (kn, nt, β) values, for scenario PD2 (on left) and scenario PD4 (on right), for approaches
presented in Bosq [2000] (red circle dotted line) and Guillas [2001] (black diamond dotted line). The
curve ξnt,β = (ln(nt))

β

n
1/3
t

, with β = 3/10, is adopted.
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FigureA7.8.3: F (kn, nt, β) values, for scenario ND2 (on left) and scenario ND4 (on right), for approaches
presented in Bosq [2000] (red circle line) and Guillas [2001] (black diamond line), with ξnt,β = (ln(nt))

β

n
1/3
t

and β = 125/100.

Diagonal scenarios D1 − D4 have been applied to the three componentwise plug-in predictors. As
expected, the amount of values

∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥kn
H

, which lie within the band [0, ξnt,β), is greater as
long as the decay rate of the eigenvalues of C is faster. Since a diagonal framework is considered in sce-
narios D1 − D2, a better performance of the approach here proposed can be noticed, in comparison with
those ones by Bosq [2000]; Guillas [2001], where errors appear, when sample sizes are not sufficiently
large, in the estimation of the non-diagonal componentwise coefficients of ρ. This possible effect of the
non-diagonal design, under a diagonal scenario, is not observed, for truncation rules selecting a very small
number of terms, in relation to the sample size. This fact occurs in the truncation rule adopted in scenarios
D3 − D4. In the pseudo-diagonal and non-diagonal scenarios, methodologies in Bosq [2000]; Guillas
[2001] are compared, such that curves ξnt,β = (ln(nt))

β

n
1/3
t

, for β = 3/10 and β = 125/100, numerically

fit their almost sure rate of convergence. As observed (see also Tables 2-4 in the Supplementary Material
provided), the sample-size dependent truncation rule, according to the rate of convergence to zero of the
eigenvalues ofC , plays a crucial role in the observed performance of both approaches.

A7.8.2 Small-sample behaviour of the ARH(1) predictors

Smaller sample sizes must be adopted in this subsection, since computational limitations arise when
the approaches formulated in Antoniadis and Sapatinas [2003] (see equations (A7.12)-(A7.14) above), as
well as penalized predictor and non-parametric kernel-based predictor in Besse et al. [2000] (see equations
(A7.8) and (A7.16), respectively), are included in the comparative study. See also Section A7.9.5 in the
Supplementary Material, where extra numerical results are provided.

On the one hand, Assumptions A1 and A3, and conditions in (A7.14), are required when regularized-
wavelet-based prediction approach is applied. In particular, since Cj = c1j

−δC , for any j ≥ 1, if
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kn = ⌈n1/α⌉ is adopted, then

1− 4δC
α

> 0 ⇒ α > 4δC .

Additionally to kn = ⌈ln(n)⌉, the truncation parameter kn = ⌈n1/α⌉ will be adopted, with α = 6.5
and α = 10, for δC = 3/2 and δC = 24/10, respectively. Furthermore, F (kn, nt, β) values de-
fined in (A7.69)-(A7.71) are computed for the wavelet-based approach just replacing {ϕn,j, j ≥ 1} by{
ϕ̃Mj , j ≥ 1

}
(see equations (A7.12)-(A7.14)). As before, since

⌈n1/α⌉ < ⌈ln(n)⌉, ⌈n1/α⌉ < ⌈(17/10)n1/(8δC+2)⌉, α = 6.5, α = 10,

conditions formulated in Section A7.7, as well as in Bosq [2000]; Guillas [2001], are verified when
kn = ⌈n1/α⌉, with α = 6.5 and α = 10, is studied.

On the other hand, the referred methodologies in Besse et al. [2000] are implemented, the following
alternative norm replaces the norm reflected in (A7.70)-(A7.71), respectively, for valuesF (kn, nt, β):

∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥
H
=

√∫ b

a

(
ρ
(
X l
n−1

)
(t)− ρlkn

(
X l
n−1

)
(t)
)2
dt, l = 1, . . . , N. (A7.41)

In this small-sample size context, the following diagonal subscenarios will be considered (see Figure
A7.8.4), when the diagonal data generation is assumed, for

δρ = 11/10, nt = 750 + 500(t− 1), t = 1, . . . , 13, ξnt,β =
(ln(nt))

β

n
1/2
t

, β = 65/100

δC =

{
3/2 scenariosD5, D7

24/10 scenariosD6, D8

, kn =

{
⌈ln(n)⌉ scenariosD5, D6

⌈n1/α⌉, α = 6.5 scenariosD7, D8

,

being q = 10 the dimension of the subspace Hq involved in the penalized estimation proposed in Besse
et al. [2000] (see also equation (A7.8)). Remark that, since approaches formulated in Besse et al. [2000]
not depend on the truncation parameter kn adopted, we only perform them for scenarios D5-D6, where
conditions imposed in that paper are verified. In the case of kernel-based predictor is used, two bandwidths
hn = 0.15, 0.25 are considered in both scenarios. Conditions formulated in Bosq [2000] and Proposi-
tion A7.7.1 of the current paper are held for all scenarios, while the conditions assumed in Antoniadis and
Sapatinas [2003]; Guillas [2001] are only verified under scenariosD7-D8.
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FigureA7.8.4: F (kn, nt, β) values, for scenario D6 (on left) and scenario D8 (on right), for our approach
(blue star line) and those one presented in Antoniadis and Sapatinas [2003] (pink square line), Besse et
al. [2000] (cyan blue plus line for penalized prediction; dark green upward-pointing triangle and purple
downward-pointing triangle lines, for kernel-based prediction, for hn = 0.15 and hn = 0.25, respectively),
Bosq [2000] (red circle line) and Guillas [2001] (black diamond line). The curve ξnt,β = (ln(nt))
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, with
β = 65/100, is drawn (light green line).
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Figure A7.8.5: F (kn, nt, β) values, for scenarios PD6 (at the top, on left) and PD8 (at the top, on
right), and scenarios ND6 (at the bottom, on left) and ND8 (at the bottom, on right), for approaches
presented in Antoniadis and Sapatinas [2003] (pink square line), Besse et al. [2000] (cyan blue plus
line for penalized prediction; dark green upward-pointing triangle and purple downward-pointing triangle
lines, for kernel-based prediction, for hn = 1.2 and hn = 1.7, respectively), Bosq [2000] (red circle line)
and Guillas [2001] (black diamond line). The curve ξnt,β = (ln(nt))

β
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t

, with β = 3/10 (at the top) and
β = 125/100 (at the bottom), is drawn (light green line).

The same values of δC and kn are adopted when pseudodiagonal scenarios (scenarios PD5-PD8) and
non-diagonal scenarios (scenarios ND5-ND8) are analysed (see Figure A7.8.5). As before, the curve
ξnt,β = (ln(nt))

β

n
1/3
t

is regarded, for pseudodiagonal and non-diagonal scenarios, with β = 3/10 and β =

125/100, respectively. While conditions in Bosq [2000] are verified for all scenarios, scenarios developed
by Antoniadis and Sapatinas [2003]; Guillas [2001] are only held when the truncation parameter proposed
in Antoniadis and Sapatinas [2003] is adopted. When smaller sample sizes are adopted, and approaches
formulated in Antoniadis and Sapatinas [2003]; Besse et al. [2000] are included in the comparative study,
new scenarios have been considered. Note that even when small sample sizes are studied, a good perfor-
mance of the ARH(1) plug-in predictor given in equations (A7.19)-(A7.22) is observed. As well as the
regularized wavelet-based approach detailed in Antoniadis and Sapatinas [2003] becomes the best method-
ology for small sample sizes, in comparision with the componentwise techniques above mentioned. Note
that the good performance observed corresponds to the truncation rule proposed by these authors, with a
small number of terms. While, when a larger number of terms is considered, according to the alternative
truncation rules tested, the observed outperformance does not hold. While the penalized prediction ap-
proach proposed in Besse et al. [2000] has been shown as the more accurate, is, however, less affected by the
regularity conditions imposed on the autocovariance kernel (see Tables 5-10 included in the Supplemen-
tary Material). Furthermore, a drawback of both approaches in Antoniadis and Sapatinas [2003]; Besse et
al. [2000] is that they require large computational times. The underlying dependence structure cannot be
provided in those approaches.
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A7.9 SupplementaryMaterial

This section provides, as Supplementary Material, the auxiliary results required (see Sections A7.9.1–
A7.9.2 below). Under a non-diagonal framework, Section A7.9.3 provides a theoretical almost sure upper
bound for the error in the norm of S(H) associated with the diagonal componentwise estimator of the
autocorrelation operator considered in Section A7.7.2, when the eigenvectors of the autocovariance operator
are unknown. A simulation study is undertaken in Section A7.9.4 to illustrate the large sample behaviour of
the formulated estimator. Tables displaying more detailed numerical results are provided in Section A7.9.5

A7.9.1 Diagonal strongly-consistent estimator when the eigenvectors ofC are known

From model proposed in (A7.18), we can formally defined the autocorrelation operator as
ρ(x) = DC−1(x), for any x ∈ H . Nevertheless, it is well known that the operatorC cannot be inverted in
the whole domain. That is, an empirical estimator ofC must be computed. In the case of {ϕj, j ≥ 1} are
known, we can define an empirical estimator Ĉn, as well as of D̂n, admitting the following diagonal spectral
decomposition, for each n ≥ 2:

Ĉn =
∞∑
j=1

Ĉn,jϕj ⊗ ϕj, Ĉn,j =
1

n

n−1∑
i=0

X2
i,j, j ≥ 1, (A7.42)

D̂n =
∞∑
j=1

D̂n,jϕj ⊗ ϕj, D̂n,j =
1

n− 1

n−2∑
i=0

Xi,jXi+1,j, j ≥ 1, (A7.43)

where {ϕj, j ≥ 1} is the eigenvectors system of C , with
{
Ĉn,j, j ≥ 1

}
and

{
D̂n,j, j ≥ 1

}
being the

eigenvalues of Ĉn and D̂n, respectively, for any n ≥ 2.

Remark A7.9.1 Under definitions in equations (A7.42)-(A7.43), the diagonal componentwise estimator, intro-
duced in equation (A7.44) below, for the autocorrelation operator ρ, naturally arises, which is different from the
componentwise estimator approaches based on the projection of the natural empirical covariance operatorsCn and
Dn, given by

Cn =
1

n

n−1∑
i=0

Xi ⊗Xi, Dn =
1

n− 1

n−2∑
i=0

Xi ⊗Xi+1, n ≥ 2,

into the empirical eigenvectors.

Henceforth, the following assumption will be also required in this subsection:

Assumption A5. X2
0,j = ⟨X0, ϕj⟩2H > 0, a.s., for every j ≥ 1.
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Remark A7.9.2 From Cauchy-Schwarz’s inequality, for any j ≥ 1 and n ≥ 2, under Assumption A5,∣∣∣∣∣∣∣∣∣∣
1

n−1

n−2∑
i=0

Xi,jXi+1,j

1
n

n−1∑
i=0

X2
i,j

∣∣∣∣∣∣∣∣∣∣
≤

2

(
1
n

n−1∑
i=0

X2
i,j

)
1
n

n−1∑
i=0

X2
i,j

= 2 a.s.

From Assumption A5, let us consider the diagonal componentwise estimator of ρ,

ρ̂kn =
kn∑
j=1

ρ̂n,jϕj ⊗ ϕj, ρ̂n,j =
D̂n,j

Ĉn,j
=

n

n− 1

n−2∑
i=0

Xi,jXi+1,j

n−1∑
i=0

X2
i,j

, j ≥ 1, n ≥ 2. (A7.44)

Remark A7.9.3 Note that, underAssumption A1, the eigenvalues ofC are strictly positive, with multiplicity one,
and C(H) = H, where C(H) denotes the range of C. For f, g ∈ C(H), there exist φ, ψ ∈ H such that
f = C (φ) and g = C (ψ) , and the following identities hold:

⟨f, g⟩C(H) = ⟨C−1C (φ) , C−1C (ψ)⟩H = ⟨φ, ψ⟩H <∞,

∥f∥2C(H) = ⟨C−1C (φ) , C−1C (φ)⟩H = ∥φ∥2H <∞. (A7.45)

From Parseval’s identity, ∥x∥2C(H) =
∞∑
j=1

[⟨x, ϕj⟩H ]2

C2
j

<∞, for any x ∈ C(H). Thus, the range ofC can

be also defined by

C(H) =

{
x ∈ H :

∞∑
j=1

⟨x, ϕj⟩2H
C2
j

<∞

}
. (A7.46)

UnderAssumptionsA1–A3 andA5, the following proposition provides the strong–consistency, in the
norm ofL(H), of the estimator (A7.44) of the autocorrelation operator, as well as of its associated ARH(1)
plug–in predictor, in the underlying Hilbert space. Asymptotic properties derived in Section A7.9.2 below
are required.

Proposition A7.9.1 Under Assumptions A1–A3 and A5, for a truncation parameter kn < n, with
lim
n→∞

kn = ∞,

n1/4

(ln(n))β
∥ρ̂kn − ρ∥L(H) −→

a.s. 0, ∥ (ρ̂kn − ρ) (Xn−1)∥H −→a.s. 0, n→ ∞.
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Proof.
Under Assumption A1, C(H) = H, as a set of functions. Then, for every x ∈ C(H) = H, under

Assumptions A2 and A5, from Parseval’s identity and Remark A7.9.2,

∥(ρ̂kn − ρ)(x)∥2H =
kn∑
j=1

[
(ρ̂n,j − ρj) ⟨x, ϕj⟩H

]2
+

∞∑
j=kn

[
ρj ⟨x, ϕj⟩H

]2
≤

kn∑
j=1

[
Dj − D̂n,j

Cj
⟨x, ϕj⟩H

]2

+
kn∑
j=1

[
Cj − Ĉn,j

Cj
ρ̂n,j ⟨x, ϕj⟩H

]2
+

∞∑
j=kn

[
ρj ⟨x, ϕj⟩H

]2
≤

[
sup

1≤j≤kn

∣∣∣Dj − D̂n,j

∣∣∣2 + 2 sup
1≤j≤kn

∣∣∣Cj − Ĉn,j

∣∣∣2]
×

kn∑
j=1

[
⟨x, ϕj⟩H
Cj

]2
+

∞∑
j=kn

[
ρj ⟨x, ϕj⟩H

]2
, a.s. (A7.47)

Thus, taking the square root in booth sides of (A7.47), and the supremum in x ∈ H = C(H), with
∥x∥H = 1, at the left–hand side, we obtain

∥ρ̂kn − ρ∥L(H) ≤ sup
x∈H, ∥x∥H=1

([
sup

1≤j≤kn

∣∣∣Dj − D̂n,j

∣∣∣2 + 2 sup
1≤j≤kn

∣∣∣Cj − Ĉn,j

∣∣∣2]

×
kn∑
j=1

[
⟨x, ϕj⟩H
Cj

]2
+

∞∑
j=kn

[
ρj ⟨x, ϕj⟩H

]2)1/2

a.s. (A7.48)

Furthermore, from Assumptions A1–A2 and Remark A7.9.3, for every x ∈ C(H) = H,

lim
n→∞

kn∑
j=1

[
⟨x, ϕj⟩H
Cj

]2
= ∥x∥2C(H) <∞, lim

n→∞

∞∑
j=kn

[
ρj ⟨x, ϕj⟩H

]2
= 0. (A7.49)

Under Assumptions A1–A3, from Corollary A7.9.2 (see equations (A7.52)–(A7.53) in the Section
A7.9.2 below), as n→ ∞,

n1/4

(ln(n))β
sup

1≤j≤kn

∣∣∣Cj − Ĉn,j

∣∣∣→a.s. 0,
n1/4

(ln(n))β
sup

1≤j≤kn

∣∣∣Dj − D̂n,j

∣∣∣→a.s. 0. (A7.50)
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Finally, from equations (A7.48)–(A7.50), as n→ ∞,

n1/4

(ln(n))β
∥ρ̂kn − ρ∥L(H) →a.s. 0.

Strong–consistency of the associated plug–in predictor is directly derived keeping in mind that

∥(ρ̂kn − ρ) (Xn−1)∥H ≤ ∥ρ̂kn − ρ∥L(H) ∥Xn−1∥H , ∥Xn−1∥H <∞ a.s.

�

A7.9.2 Asymptotic properties of the empirical eigenvalues and eigenvectors

This section presents the auxiliary results needed on the formulation of the theoretical results derived
in Section A7.7. The asymptotic properties of the eigenvalues involved in the spectral decomposition of
Ĉn, D̂n, Cn andDn will be obtained in Corollary A7.9.1 below. Corollary A7.9.2 provides the asymptotic
properties of the diagonal coefficients of Dn, with respect to the eigenvectors of Cn. In the derivation of
these results, the following theorem plays a crucial role (see [Bosq, 2000, Theorem 4.1, Corollary 4.1 and
Theorem 4.8]).

TheoremA7.9.1 Under Assumption A3, for any β > 1
2
, as n→ ∞,

n1/4

(ln(n))β
∥Cn − C∥S(H) →

a.s. 0,
n1/4

(ln(n))β
∥Dn −D∥S(H) →

a.s. 0,

and, if ∥X0∥H is bounded, being ∥·∥S(H) the norm of Hilbert–Schmidt operators,

∥Cn − C∥S(H) = O

((
ln(n)

n

)1/2
)
a.s., , ∥Dn −D∥S(H) = O

((
ln(n)

n

)1/2
)
a.s.

From Theorem A7.9.1, we obtain the following corollary on the asymptotic properties of the eigenvalues{
Ĉn,j, j ≥ 1

}
and
{
D̂n,j, j ≥ 1

}
of Ĉn and D̂n, respectively, as well as of the eigenvalues{Cn,j, j ≥ 1}

of the empirical estimator Cn and the diagonal coefficients D̃n,j = Dn(ϕ̃n,j)(ϕ̃n,j), j ≥ 1, with, for n
sufficiently large,

Dn(ϕ̃n,j) = D̃n,jϕ̃n,j, j ≥ 1. (A7.51)
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Corollary A7.9.1 Under Assumptions A1–A3, the following identities hold, for any β > 1
2
:

n1/4

(ln(n))β
sup
j≥1

∣∣∣Ĉn,j − Cj

∣∣∣ ≤ n1/4

(ln(n))β
∥Cn − C∥S(H) →

a.s. 0, (A7.52)

n1/4

(ln(n))β
sup
j≥1

∣∣∣D̂n,j −Dj

∣∣∣ ≤ n1/4

(ln(n))β
∥Dn −D∥S(H) →

a.s. 0, (A7.53)

where, as before, {Cj, j ≥ 1} and {Dj, j ≥ 1} are the systems of eigenvalues of C and D, respectively;{
Ĉn,j, j ≥ 1

}
and
{
D̂n,j, j ≥ 1

}
are given in (A7.43). In addition, for n sufficiently large,

n1/4

(ln(n))β
sup
j≥1

|Cn,j − Cj| ≤
n1/4

(ln(n))β
∥Cn − C∥S(H) →

a.s. 0, (A7.54)

n1/4

(ln(n))β
sup
j≥1

∣∣∣Dn(ϕ̃n,j)(ϕ̃n,j)−Dj

∣∣∣ ≤ n1/4

(ln(n))β
∥Dn −D∥S(H) →

a.s. 0, (A7.55)

where {Cn,j, j ≥ 1} are the empirical eigenvalues ofCn = 1
n

n−1∑
i=0

Xi ⊗Xi, and
{
D̃n,j, j ≥ 1

}
are given in

(A7.51).

Proof. Since Ĉn, with
∞∑
j=1

Ĉn,j =
1

n

n−1∑
i=0

∞∑
j=1

X2
i,j =

1

n

n−1∑
i=0

∥Xi∥2H ,

is in the trace class, then, under Assumptions A1–A2,

n1/4

(ln(n))β
∥Ĉn − C∥S(H) =

n1/4

(ln(n))β

√∑
j≥1

|Ĉn,j − Cj|2

=
n1/4

(ln(n))β

√∑
j≥1

|Cn(ϕj)(ϕj)− Cj|2

≤ n1/4

(ln(n))β

√∑
j,l≥1

|Cn(ϕk)(ϕl)− δj,lCj|2

=
n1/4

(ln(n))β
∥Cn − C∥S(H) , (A7.56)

where δj,l denotes the Kronecker delta function. From (A7.56), applying Theorem A7.9.1 under Assump-
tion A3,

n1/4

(ln(n))β
sup
j≥1

|Ĉn,j − Cj | ≤
n1/4

(ln(n))β
∥Ĉn − C∥S(H) ≤

n1/4

(ln(n))β
∥Cn − C∥S(H) →a.s. 0,
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as we wanted to prove. Equation (A7.53) is obtained in a similar way to equation (A7.52), under Assump-
tions A2–A3, and keeping in mind that D̂n is, a.s., in the trace class, with∣∣∣∣∣

∞∑
j=1

D̂n,j

∣∣∣∣∣ ≤ 2
∞∑
j=1

Ĉn,j a.s.,

then

n1/4

(ln(n))β
sup
j≥1

|D̂n,j −Dj| ≤
n1/4

(ln(n))β
∥Dn −D∥S(H) →a.s. 0.

From Theorem A7.9.1 and under Assumption A3 for n sufficiently large,Cn is a Hilbert–Schmidt op-
erator, and in particular, it is a compact operator. Thus, applying [Bosq, 2000, Lemma 4.2] and Theorem
A7.9.1, for n ≥ n0,with n0 sufficiently large, we obtain

n1/4

(ln(n))β
sup
k≥1

|Cn,k − Ck| ≤
n1/4

(ln(n))β
∥Cn − C∥L(H) ≤

n1/4

(ln(n))β
∥Cn − C∥S(H) →a.s. 0.

Finally, as done in the derivation of (A7.54), equation (A7.55) is obtained, underAssumptionsA2–A3,
from Theorem A7.9.1 and applying [Bosq, 2000, Lemma 4.2]. �

The following lemma, which contains some assertions from [Bosq, 2000, Corollary 4.3], provides infor-
mation on the asymptotic properties of the empirical eigenvectors.

LemmaA7.9.1 Assume that ∥X0∥H is bounded, and if {kn} is a sequence of integers such that

Λkn = o

((
n

log n

)1/2
)
,

as n→ ∞, with
Λkn = sup

1≤j≤kn
(Cj − Cj+1)

−1, 1 ≤ j ≤ kn, (A7.57)

then, under Assumption A1,

sup
1≤j≤kn

∥ϕ′
n,j − ϕn,j∥H →a.s. 0, n→ ∞,

beingϕ′
n,j = sgn ⟨ϕn,j, ϕj⟩H ϕj , for each i ∈ Z, j ≥ 1 andn ≥ 2, where sgn⟨ϕn,j, ϕj⟩H = 1⟨ϕn,j ,ϕj⟩H≥0−

1⟨ϕn,j ,ϕj⟩H<0 and {ϕn,j, j ≥ 1} denoting the empirical eigenvalues of the empirical estimatorCn.

Let us now consider the following lemma to obtain the strong–consistency of{Dn,j, j ≥ 1} (see Corol-
lary A7.9.2 below).
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LemmaA7.9.2 Assume that ∥X0∥H is bounded, and if {kn} is a sequence of integers such that

Λkn = o
(
n1/4(ln(n))β−1/2

)
,

as n → ∞, whereΛkn is defined in equation (A7.57) under Assumptions A1 and A3. The following limit then
holds, for any β > 1/2,

n1/4

(ln(n))β
sup

1≤j≤kn
∥ϕ′

n,j − ϕn,j∥H →a.s. 0, n→ ∞, (A7.58)

for any β > 1/2, where {ϕ′
n,j, j ≥ 1} denote the empirical eigenvalues of the empirical estimatorCn.

Proof. From [Bosq, 2000, Lemma 4.3], for any n ≥ 2 and 1 ≤ j ≤ kn,∥∥ϕ′
n,j − ϕn,j

∥∥
H
≤ aj ∥Cn − C∥L(H) ≤ 2

√
2Λkn ∥Cn − C∥S(H) ,

which implies that

P
(

sup
1≤j≤kn

∥ϕ′
n,j − ϕn,j∥H ≥ η

)
≤ P

(
∥Cn − C∥S(H) ≥

η

2
√
2Λkn

)
.

Thus, since ∥X0∥H is bounded, from [Bosq, 2000, Theorem 4.2], and under Assumption A3, for any
η > 0, and β > 1/2,

P

(
n1/4

(ln(n))β
sup

1≤j≤kn
∥ϕ′

n,j − ϕn,j∥H ≥ η

)

≤ P

(
∥Cn − C∥S(H) ≥

η

2
√
2Λkn

(ln(n))β

n1/4

)

≤ 4 exp

−
n
η2

8Λ2
kn

(ln(n))2β

n1/2

γ1 + δ1
η

2
√
2Λkn

(ln(n))β

n1/4


= O

n− η2

γ1+ηδ1( ln(n)
n )

1/2

 , n→ ∞. (A7.59)

Thus, taking η2 > γ1 + δ1η, sequence (A7.59) is summable, and applying the Borel–Cantelli Lemma we
arrive to the desired result.

�
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Corollary A7.9.2 Under the conditions of Lemma A7.9.2, considering now Assumptions A1–A3, for β > 1
2
,

and n sufficiently large,
n1/4

(ln(n))β
sup
j≥1

|Dn,j −Dj| →a.s. 0, n→ ∞, (A7.60)

where {Dn,j, j ≥ 1} are defined asDn,j =
1

n−1

n−2∑
i=0

Xi,n,jXi+1,n,j , for each n ≥ 2 and j ≥ 1.

Proof. From Theorem A7.9.1, under Assumption A3, there exists an n0 such that for n ≥ n0, Dn is a
Hilbert-Schmidt operator. Then, for n ≥ n0, for every j ≥ 1, applying orthonormality of the empirical
eigenvectors {ϕn,j, j ≥ 1}, under Assumptions A1–A2,

n1/4

(ln(n))β
|Dn,j −Dj| =

n1/4

(ln(n))β
|Dn(ϕn,j)(ϕn,j)−Dn(ϕn,j)(ϕj) +Dn(ϕn,j)(ϕj)

−D(ϕn,j)(ϕj) +D(ϕn,j)(ϕj)−D(ϕj)(ϕj)|

≤ n1/4

(ln(n))β
[∥Dn(ϕn,j)∥H∥ϕn,j − ϕj∥H

+∥(Dn −D)(ϕn,j)∥H∥ϕj∥H + ∥D(ϕn,j − ϕj)∥H∥ϕj∥H ]

≤ n1/4

(ln(n))β
[
∥Dn∥L(H)∥ϕn,j − ϕj∥H + ∥Dn −D∥L(H)

+∥D∥L(H)∥ϕn,j − ϕj∥H
]
. (A7.61)

From Theorem A7.9.1, under Assumption A3,

n1/4

(ln(n))β
∥Dn −D∥L(H) ≤

n1/4

(ln(n))β
∥Dn −D∥S(H) →a.s. 0, (A7.62)

and, for n sufficiently large, ∥Dn∥L(H) <∞. Furthermore, from Lemma A7.9.2 (see equation (A7.58)),

n1/4

(ln(n))β
sup

1≤j≤kn
∥ϕn,j − ϕj∥H →a.s. 0. (A7.63)

Hence, from equations (A7.62)-(A7.63), taking the supremum in j at the left-hand side of equation (A7.61),
we obtain equation (A7.60). �

Remark A7.9.4 Under Assumption A1, let us now consider the sequence {aj, j ≥ 1} given by

a1 = 2
√
2

1

C1 − C2

, aj = 2
√
2max

(
1

Cj−1 − Cj
,

1

Cj − Cj+1

)
, j ≥ 2,
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IfCj > Cj+1, when 1 ≤ j ≤ kn, hence aj > 0 for any 1 ≤ j ≤ kn, and then akn <
kn∑
j=1

aj , for a truncation

parameter lim
n→∞

kn = ∞, with kn < n. Moreover, there exists an integer j0 large enough such that, for any
j ≥ j0, aj > 1. In particular, if kn is large enough,

1

Ckn
<

1

Ckn − Ckn+1

< akn <
kn∑
j=1

aj,
kn∑
j=1

aj > 1.

A7.9.3 One–sided upper a.s. asymptotic estimate of theS(H)norm of the error associated
with ρ̃kn

In this section, ρ does not admit a diagonal spectral decomposition in terms of the eigenvectors of C ,
beingρnot positive, nor trace operator, but it is a Hilbert-Schmidt operator. In this more general framework,
an asymptotically almost surely one-sided upper estimate of the S(H) norm of the error associated with
ρ̂kn is derived. See Ruiz-Medina and Álvarez-Liébana [2018a], where sufficient conditions for the strong-
consistency, in the trace norm, of the autocorrelation operator of an ARH(1) process, when it is a positive
trace operator which does not admit a diagonal spectral decomposition, are provided.

Proposition A7.9.2 Let us assume that ρ is a Hilbert-Schmidt, but not positive nor trace operator. Under As-
sumption A5, and conditions imposed in Lemma A7.9.2,

∥ρ̃kn − ρ∥2S(H) ≤ ∥ρ∥2S(H) −
∞∑
j=1

(ρ (ϕj) (ϕj))
2 =

∞∑
j ̸=k

(
D (ϕj) (ϕk)

Cj

)2

<∞.

In particular, for n sufficiently large,

∥ρ̃kn − ρ∥2S(H) ≤
∞∑
j ̸=k

[
Dn(ϕn,j)(ϕn,k)

Cn,j

]2
a.s.

Proof.
Let us consider the eigenvectors {ϕn,j, j ≥ 1} ofCn. Applying Parseval’s identity, we obtain

∥ρ̃kn − ρ∥2S(H) = ∥(ρ̃kn − ρ)∗(ρ̃kn − ρ)∥1

=
∞∑
j=1

⟨(ρ̃kn − ρ)(ϕn,j), (ρ̃kn − ρ)(ϕn,j)⟩H

=
∞∑
j=1

∥(ρ̃kn − ρ)(ϕn,j)∥2H
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=
∞∑
j=1

∞∑
k=1

[
⟨ρ̃kn(ϕn,j), ϕn,k⟩H − ⟨ρ(ϕn,j), ϕn,k⟩H

]2
=

∞∑
j=1

∞∑
k=1

[
⟨ρ̃kn(ϕn,j), ϕn,k⟩H

]2
+

∞∑
j=1

∞∑
k=1

[
⟨ρ(ϕn,j), ϕn,k⟩H

]2
−

∞∑
j=1

∞∑
k=1

2 ⟨ρ̃kn(ϕn,j), ϕn,k⟩H ⟨ρ(ϕn,j), ϕn,k⟩H

≤
∞∑
j=1

kn∑
k=1

δj,k[Dn,jC
−1
n,j ]

2 +
∞∑
j=1

∞∑
k=1

[
⟨
DC−1(ϕn,j), ϕn,k

⟩
H
]2

− 2
∞∑
j=1

kn∑
k=1

δj,kDn,jC
−1
n,j

⟨
C−1(ϕn,j), D

∗(ϕn,k)
⟩
H

=
∞∑
j=1

[Dn,jC
−1
n,j ]

2 − 2Dn,jC
−1
n,j

⟨
DC−1(ϕn,j), ϕn,j

⟩
H

+
∞∑
j=1

[⟨
DC−1(ϕn,j), ϕn,j

⟩
H

]2
+

∞∑
j ̸=k

⟨[
DC−1(ϕn,j), ϕn,k

⟩
H

]2
=

∞∑
j=1

[Dn,jC
−1
n,j −DC−1(ϕn,j)(ϕn,j)]

2

+
∞∑
j ̸=k

[⟨
DC−1(ϕn,j), ϕn,k

⟩
H

]2
, (A7.64)

where δj,k denotes the Kronecker delta function, and ∥·∥1 represents the trace operator norm. From Theo-
rem A7.9.1, under Assumption A3,

∥DnC
−1
n −DC−1∥S(H) = ∥DnC

−1
n −DC−1

n

+ DC−1
n −DC−1∥S(H)

≤ ∥DnC
−1
n −DC−1

n ∥S(H)

+ ∥DC−1
n −DC−1∥S(H) = ∥(Dn −D)C−1

n ∥S(H)

+ ∥D(C−1
n − C−1)∥S(H),

leading to

lim
n→∞

∞∑
j=1

[Dn,jC
−1
n,j −DC−1(ϕn,j)(ϕn,j)]

2 = 0 a.s. (A7.65)
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From equations (A7.64)–(A7.65), and from Lemma A7.9.2,

lim
n→∞

∥ρ̃kn − ρ∥2S(H) = lim
n→∞

∥(ρ̃kn − ρ)∗(ρ̃kn − ρ)∥1

= lim
n→∞

∞∑
j ̸=k

[⟨
DC−1(ϕn,j), ϕn,k

⟩
H

]2
= lim

n→∞

∞∑
j ̸=k

[
DC−1(ϕn,j)(ϕn,k)−DC−1(ϕn,j)(ϕk)

+DC−1(ϕn,j)(ϕk)−
∞∑
j ̸=k

DC−1(ϕj)(ϕk)

+DC−1(ϕj)(ϕk)
]2

≤ lim
n→∞

∞∑
j ̸=k

[
∥DC−1(ϕn,j)∥H∥ϕn,k − ϕk∥H

+∥DC−1∥L(H)∥ϕn,j − ϕj∥H +DC−1(ϕj)(ϕk)
]2

=
∞∑
j ̸=k

[DC−1(ϕj)(ϕk)]
2 ≤ ∥ρ∥2S(H) a.s

Therefore, when ρ is not positive, nor trace operator, but it is Hilbert-Schmidt operator, the norm of the
error associated with ρ̃kn , in the space of Hilbert-Schmidt operators, is a.s. asymptotically upper bounded
by the following quantity:

∥ρ∥2S(H) −
∞∑
j=1

[ρ(ϕj)(ϕj)]
2 =

∞∑
j ̸=k

[
D(ϕj)(ϕk)

Cj

]2
<∞. (A7.66)

Equation (A7.66) can be approximated by the empirical quantity:

∞∑
j ̸=k

[
Dn(ϕn,j)(ϕn,k)

Cn,j

]2
.

Thus, for n sufficiently large,

∥ρ̃kn − ρ∥2S(H) ≤
∞∑
j ̸=k

[
Dn(ϕn,j)(ϕn,k)

Cn,j

]2
a.s.

�
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A7.9.4 Simulation study: large-sample behaviour of the componentwise estimator of ρ,
when eigenvectors ofC are unknown

A brief simulation study is undertaken to illustrate the theoretical results on the strong-consistency of
the formulated diagonal componentwise estimator of ρ, when {ϕj, j ≥ 1} are unknown and a Gaussian
diagonal data generation is achieved. An almost sure rate of convergence is fitted as well.

In all of the scenarios considered, the autocovariance operatorC is defined as the inverse of a power of
the Dirichlet negative Laplacian operator on [0, δ]. Namely, the spectral decomposition ofC is determined,
in all of the scenarios, by

C(f)(g) =
∞∑
j=1

Cj⟨ϕj, f⟩H⟨ϕj, g⟩H , ϕj (x) =

√
2

δ
sin

(
πjx

δ

)
, Cj = c1j

−βC ,

for f, g ∈ H = L2((0, δ)) and x ∈ (0, δ), being c1 a positive constant. In the remaining, we fix
(0, δ) = (0, 4). Concerning {Cj, j ≥ 1}, different rates βC will be regarded, such that AssumptionA1 is
directly held; i.e., βC > 1.

In a diagonal context, autocorrelation operator and covariance operator of the error term are approxi-
mated as follows, withM = 50:

ρ (X) (t) ≃
M∑
j=1

ρj,j⟨ϕj, X⟩Hϕj(t), Cε (X) (t) ≃
M∑
j=1

σ2
j,j⟨ϕj, X⟩Hϕj(t),

where
ρj,j = c2j

−δρ , σ2
j,j = Cj (1− ρj,j) ,

for any j ≥ 1, being δρ > 1/2, and c2 a constant which belongs to (0, 1). Thus, ρ is a diagonal self-adjoint
Hilbert-Schmidt operator, with ∥ρ∥L(H) = sup

j≥1
|ρj| < 1, under Assumption A2.

Simulations are then performed under Assumptions A1–A4, and the empirical version of the upper-
bound derived in (A7.24) in the main paper is considered:

UB (kn, l) = sup
1≤j≤kn

∣∣∣∣∣ρ̃ln,j − Dl
n,j

Cj

∣∣∣∣∣+ sup
1≤j≤kn

∣∣∣∣∣Dl
n,j

Cj
− ρj

∣∣∣∣∣
+ 2

kn∑
j=1

∣∣Dl
n,j

∣∣
Cj

∥∥∥ϕln,j − ϕ′,l
n,j

∥∥∥
H
+ sup

j>kn

|ρj| , (A7.67)

being kn = ⌈ln(n)⌉, in a manner that conditions imposed in Proposition A7.7.1 are held (see [Bosq, 2000,
Example 8.6]. In equation (A7.67), superscript l denotes the estimator computed based on the lth genera-
tion of the values

X̃ l
i,n,j = ⟨X l

i , ϕ
l
n,j⟩, l = 1, . . . , N, j = 1, . . . , kn, i = 0, . . . , n− 1.
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Here,N = 500 realizations have been generated, with shape parameters

δC = 61/60, 3/2, 9/5, δρ = 11/10.

Discretization step ∆t = 0.06 has been adopted. For sample sizes nt = 35000 + 40000 (t− 1), for each
t = 1, . . . , 10,

E (kn, nt, β) =

(
N∑
l=1

1(ξnt,β
,∞) (UB (kn, l))

)
/N, ξnt,β =

(ln(nt))
β

n
1/3
t

, (A7.68)

values are reflected in Table A7.9.1, in which the curve ξnt,β is fitted as the almost sure rate of conver-
gence, with β = 95/100. In equation (A7.68), 1(ξnt,β

,∞) denotes the indicator function over the interval
(ξnt,β,∞).

Table A7.9.1: E (kn, nt, β) values defined in (A7.68), for β = 95/100 and N = 500 realizations, with
δρ = 11/10, and δC = 61/60, 3/2, 9/5, considering nt = 35000 + 40000(t − 1), t = 1, . . . , 10, and
kn = ⌈ln(n)⌉.

nt kn δC = 61/60 δC = 3/2 δC = 9/5
35000 10 33

500
28
500

20
500

75000 11 19
500

15
500

11
500

115000 11 10
500

8
500

5
500

155000 11 4
500

3
500

2
500

195000 12 5
500

4
500

2
500

235000 12 3
500

1
500

1
500

275000 12 3
500

0 0
315000 12 0 1

500
0

355000 12 1
500

0 0
395000 12 0 0 0

The convergence to zero of the empirical mean of

∥ρ̂kn − ρ∥L(H)

is numerically illustrated in Figure A7.9.1 below, which displays the empirical mean of values UB (kn, l),
against the curve ξnt,β , for each l = 1, . . . , N realizations, withN = 500,β = 95/100 andkn = ⌈ln(n)⌉.
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FigureA7.9.1: Empirical mean of UB (kn, l), for l = 1, . . . , N , with N = 500, δρ = 11/10, nt = 15000+
20000(t− 1), t = 1, . . . , 20, and kn = ⌈ln(n)⌉. Shape parameters δC = 61/60, 3/2, 9/5 are considered
(blue diamond, red star and yellow circle dotted lines, respectively). The curve ξnt,β = (ln(nt))

β

n
1/3
t

, with
β = 95/100, is also drawn (green dotted line).

A theoretical almost sure rate of convergence for the diagonal componentwise estimator ρ̃kn has not
been derived in Proposition A7.7.1. However, when a diagonal data generation is performed, under different
rates of convergence to zero of the eigenvalues ofC , the curve

ξnt,95/100 =
(ln(n))95/100

n1/3

is numerically fitted, when large samples sizes are considered. As expected, for the largest shape parameter
value δC , corresponding to the fastest decay velocity of the eigenvalues of the autocovariance operator, we
obtain the fastest convergence to zero of ∥ρ̃kn − ρ∥L(H). From results displayed in Figure A7.9.1, the em-
pirical mean of the upper bound in (A7.67), computed from N = 500 realizations, is showed that can be
upper bounded by the curve ξnt,95/100 =

(ln(n))95/100

n1/3 , for the parameters adopted.

A7.9.5 Comparative study: numerical results

Tables A7.9.2-A7.9.4 and A7.9.5-A7.9.10 of this section reflect, in more detail, the numerical results ob-
tained in the comparative study performed in Section A7.8. Details about the comparative study, and about
which conditions are held under any scenario for each approach considered, can be found in the referred
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section. As remarked at the beginning of that section, the ARH(1) diagonal componentwise plug-in predic-
tor already established will be only considered under diagonal scenarios. Strong-consistency results for the
estimator ρ̃kn , in the trace norm, when ρ is a positive and trace operator, which does not admit a diagonal-
ization in terms of the eigenvectors ofC , have recently been provided in Ruiz-Medina and Álvarez-Liébana
[2018a].

The coefficients corresponding to the spectral decomposition of ρ andCε, related to the tensorial prod-
uct {ϕj ⊗ ϕh, j, h ≥ 1}, are given by

ρj,j = c2j
−βρ , σ2

j,j = Cj
(
1− ρ2j,j

)
,

for each j ≥ 1 and βρ = 11/10, and, for any j ̸= h, j, h ≥ 1,

ρj,h =


0, scenario D
e−|j−h|/W scenario PD
1
K

1
|j−h|2+1

scenario ND
, σ2

j,h =


0, scenario D
e−|j−h|2/W scenario PD
e−|j−h|2/W scenario ND

for diagonal (D), pseudodiagonal (PD) and non-diagonal (ND) scenarios, being 1
K

= 0.275. As before, c2
is a constant in (0, 1), verifying Assumption A2.

Thus, the error measure

F (kn, nt, β) =

(
N∑
l=1

1(ξnt,β
,∞)

(∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥kn
H

))
/N, (A7.69)

will be displayed (see Figures A7.8.1-A7.8.3 below), being1(ξnt,β
,∞) the indicator function over the interval

(ξnt,β,∞), where ξnt,β numerically fits the almost sure rate of convergence of∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥kn
H
.

The following diagonal subscenarios will be considered (see Figure A7.8.1), when the diagonal data gener-
ation is assumed, for

δρ = 11/10, nt = 35000 + 40000(t− 1), t = 1, . . . , 10, ξnt,β =
(ln(nt))

β

n
1/2
t

,

with β = 65/100:

δC =

{
3/2 scenariosD1, D3

24/10 scenariosD2, D4

, kn =

{
⌈ln(n)⌉ scenariosD1, D2

⌈e′n1/(8δC+2)⌉ scenariosD3, D4

,

being e′ = 17/10. As discussed, conditions formulated in Bosq [2000] and Proposition A7.7.1 of the cur-
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rent paper are held for scenariosD1-D2, while in scenariosD3-D4, the conditions assumed in Proposition
A7.7.1, Bosq [2000]; Guillas [2001] are verified. In the subscenariosD1-D4,

∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥kn
H

=

√√√√∫ b

a

(
kn∑
j=1

ρjX
l
n−1,n,jϕj(t)−

kn∑
j=1

ρln,j
(
X l
n−1

)
ϕln,j(t)

)2

dt, (A7.70)

is computed, being ρlkn
(
X l
n−1

)
the predictors defined in (A7.19)-(A7.22), Bosq [2000]; Guillas [2001],

respectively, for any j = 1, . . . , kn, and based on the lth generation of the values X̃ l
i,n,j = ⟨X l

i , ϕ
l
n,j⟩H , for

l = 1, . . . , N , withN = 500 simulations. See more details in Section A7.8.

Table A7.9.2: F (kn, nt, β) values in (A7.69)-(A7.70), for scenarios D1 −D4. O.A. denotes the approach
here detailed; B denotes the approach in Bosq [2000]; G denotes the approach in Guillas [2001].

ScenarioD1 ScenarioD2 ScenarioD3 ScenarioD4

nt kn O.A. B G O.A. B G kn O.A. B G kn O.A. B G
35000 10 11

500
68
500

70
500

4
500

24
500

28
500

3 13
500

12
500

10
500

2 7
500

7
500

4
500

75000 11 9
500

62
500

66
500

3
500

18
500

25
500

3 9
500

9
500

6
500

2 4
500

3
500

2
500

115000 11 6
500

59
500

62
500

3
500

16
500

22
500

3 6
500

5
500

5
500

2 3
500

3
500

2
500

155000 11 4
500

57
500

60
500

2
500

12
500

19
500

3 5
500

4
500

4
500

2 3
500

2
500

1
500

195000 12 6
500

60
500

64
500

4
500

15
500

21
500

4 6
500

4
500

3
500

3 4
500

2
500

1
500

235000 12 4
500

58
500

61
500

0 14
500

17
500

4 4
500

3
500

2
500

3 2
500

1
500

1
500

275000 12 3
500

51
500

58
500

0 13
500

16
500

4 3
500

2
500

1
500

3 2
500

1
500

0

315000 12 3
500

50
500

55
500

1
500

12
500

14
500

4 2
500

1
500

1
500

3 1
500

0 0

355000 12 2
500

47
500

53
500

0 12
500

13
500

4 2
500

1
500

0 3 1
500

0 0

395000 12 2
500

44
500

51
500

0 11
500

13
500

4 2
500

0 0 3 1
500

0 0

Parameters δC and kn for pseudodiagonal scenarios (scenariosPD1-PD4) and non-diagonal scenarios
(scenariosND1-ND4) are fixed as done above for scenariosD1-D4, being

δ2 = 11/10, nt = 35000 + 40000(t− 1), t = 1, . . . , 10, ξnt,β = (ln(nt))
β n

−1/3
t .

Values of β = 3/10 and β = 125/100 are distinguished for pseudodiagonal and non-diagonal scenarios,
respectively. Note that, as discussed above, different values of

{
ρj,h, σ

2
j,h, j, h ≥ 1

}
are adopted for

these cases. In fact, under pseudodiagonal and non-diagonal frameworks, the following truncated norm is
then computed, instead of (A7.70):√√√√∫ b

a

(∫ b

a

(
kn∑

j,k=1

ρj,kϕj(t)ϕk(s)

)
ds−

kn∑
j=1

ρln,j
(
X l
n−1

)
ϕln,j(t)

)2

dt. (A7.71)
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Remark that PD1-PD2 and ND1-ND2 scenarios verify conditions required in Bosq [2000], while
scenarios PD3-PD4 andND3-ND4 are included in both setting of conditions.

Table A7.9.3: F (kn, nt, β) values in (A7.69) and (A7.71), for scenarios PD1 − PD4. B denotes the
approach in Bosq [2000]; G denotes the approach in Guillas [2001].

Scenario PD1 Scenario PD2 Scenario PD3 Scenario PD4

nt kn B G kn B G kn B G kn B G
35000 10 32

500
33
500

10 25
500

29
500

3 28
500

26
500

2 27
500

24
500

75000 11 29
500

31
500

11 21
500

23
500

3 26
500

24
500

2 22
500

19
500

115000 11 26
500

28
500

11 18
500

20
500

3 23
500

21
500

2 18
500

15
500

155000 11 24
500

26
500

11 14
500

17
500

3 19
500

17
500

2 16
500

12
500

195000 12 19
500

21
500

12 10
500

13
500

4 14
500

12
500

3 11
500

9
500

235000 12 16
500

16
500

12 12
500

14
500

4 15
500

10
500

3 13
500

10
500

275000 12 12
500

13
500

10 8
500

10
500

4 9
500

7
500

3 7
500

6
500

315000 12 9
500

15
500

12 5
500

7
500

4 5
500

4
500

3 4
500

3
500

355000 12 8
500

11
500

12 3
500

5
500

4 3
500

3
500

3 2
500

2
500

395000 12 6
500

9
500

12 3
500

5
500

4 2
500

1
500

3 1
500

0

Table A7.9.4: F (kn, nt, β) values in (A7.69) and (A7.71), for scenarios ND1 − ND4. B denotes the
approach in Bosq [2000]; G denotes the approach in Guillas [2001].

ScenarioND1 ScenarioND2 ScenarioND3 ScenarioND4

nt kn B G kn B G kn B G kn B G
35000 10 67

500
71
500

10 59
500

62
500

3 55
500

47
500

2 44
500

40
500

75000 11 44
500

50
500

11 38
500

45
500

3 36
500

31
500

2 34
500

30
500

115000 11 47
500

52
500

11 32
500

40
500

3 30
500

21
500

2 27
500

20
500

155000 11 51
500

55
500

11 27
500

34
500

3 27
500

25
500

2 23
500

17
500

195000 12 39
500

44
500

12 22
500

29
500

4 21
500

14
500

3 16
500

13
500

235000 12 40
500

42
500

12 29
500

33
500

4 18
500

16
500

3 12
500

9
500

275000 12 35
500

37
500

12 24
500

28
500

4 19
500

13
500

3 9
500

5
500

315000 12 24
500

28
500

12 17
500

19
500

4 11
500

8
500

3 6
500

3
500

355000 12 21
500

25
500

12 12
500

15
500

4 7
500

4
500

3 5
500

2
500

395000 12 18
500

21
500

12 9
500

12
500

4 6
500

3
500

3 4
500

2
500

When approaches formulated in Antoniadis and Sapatinas [2003]; Besse et al. [2000] are included,
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smaller sample sizes must be considered due to computational limitations. Hence, a small-sample compar-
ative study is shown in Tables A7.9.5-A7.9.10. When the referred methodologies in Besse et al. [2000] are
implemented, the following alternative norm replaces the norm reflected in (A7.70)-(A7.71), respectively,
for valuesF (kn, nt, β):

∥∥(ρ− ρlkn
) (
X l
n−1

)∥∥
H
=

√∫ b

a

(
ρ
(
X l
n−1

)
(t)− ρlkn

(
X l
n−1

)
(t)
)2
dt, l = 1, . . . , N. (A7.72)

In this small-sample size context, the following diagonal subscenarios will be considered, when the di-
agonal data generation is assumed, for δρ = 11/10, nt = 750 + 500(t − 1), t = 1, . . . , 13, and
ξnt,β = (ln(nt))

β

n
1/2
t

, with β = 65/100:

δC =

{
3/2 scenariosD5, D7

24/10 scenariosD6, D8

, kn =

{
⌈ln(n)⌉ scenariosD5, D6

⌈n1/α⌉, α = 6.5 scenariosD7, D8

,

being q = 10 the dimension of the subspaceHq involved in the penalized estimation proposed in Besse et
al. [2000]. Remark that, since approaches formulated in Besse et al. [2000] not depend on the truncation
parameter kn adopted, we only perform them for scenariosD5-D6, where conditions imposed in that paper
are verified. In the case of kernel-based predictor is used, two bandwidths hn = 0.15, 0.25 are considered
in both scenarios. Conditions formulated in Bosq [2000] and Proposition A7.7.1 of the current paper are
held for all scenarios, while the conditions assumed in Antoniadis and Sapatinas [2003]; Guillas [2001] are
only verified under scenariosD7-D8.

The same values of δC and kn are adopted when pseudodiagonal scenarios (scenarios PD5-PD8) and
non-diagonal scenarios (scenarios ND5-ND8) are analysed. As before, the curve ξnt,β = (ln(nt))

β

n
1/3
t

is re-

garded, for pseudodiagonal and non-diagonal scenarios, with β = 3/10 and
β = 125/100, respectively. While conditions in Bosq [2000] are verified for all scenarios, scenarios de-
veloped by Antoniadis and Sapatinas [2003]; Guillas [2001] are only held when the truncation parameter
proposed in Antoniadis and Sapatinas [2003] is adopted. When smaller sample sizes are adopted, and ap-
proaches formulated in Antoniadis and Sapatinas [2003]; Besse et al. [2000] are included in the comparative
study, new scenarios have been considered. Note that even when small sample sizes are studied, a good per-
formance of the ARH(1) plug-in predictor given in equations (A7.19)-(A7.22) is observed. As well as the
regularized wavelet-based approach detailed in Antoniadis and Sapatinas [2003] becomes the best method-
ology for small sample sizes, in comparision with the componentwise techniques above mentioned. Note
that the good performance observed corresponds to the truncation rule proposed by these authors, with a
small number of terms. While, when a larger number of terms is considered, according to the alternative
truncation rules tested, the observed outperformance does not hold. While the penalized prediction ap-
proach proposed in Besse et al. [2000] has been shown as the more accurate, is, however, less affected by the
regularity conditions imposed on the autocovariance kernel. Furthermore, a drawback of both approaches
in Antoniadis and Sapatinas [2003]; Besse et al. [2000] is that they require large computational times. The
underlying dependence structure cannot be provided in those approaches.
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Table A7.9.5: F (kn, nt, β) values in (A7.69)-(A7.70), for scenarios 13-16. O.A., B, G and AS denote the
approaches in Antoniadis and Sapatinas [2003]; Bosq [2000]; Guillas [2001], respectively.

Scenario 13 Scenario 14 Scenario 15 Scenario 16
nt kn O.A. B G AS O.A. B G AS kn O.A. B G AS kn O.A. B G AS
750 6 42

500
83
500

90
500

84
500

31
500

76
500

79
500

72
500

2 30
500

33
500

34
500

21
500

1 19
500

24
500

24
500

14
500

1250 7 28
500

74
500

88
500

76
500

29
500

74
500

78
500

76
500

2 27
500

29
500

30
500

20
500

2 17
500

21
500

22
500

13
500

1750 7 27
500

70
500

84
500

75
500

28
500

71
500

73
500

70
500

2 25
500

25
500

27
500

17
500

2 16
500

19
500

21
500

11
500

2250 7 26
500

66
500

81
500

71
500

25
500

68
500

67
500

65
500

3 24
500

23
500

26
500

15
500

2 13
500

17
500

20
500

9
500

2750 7 28
500

68
500

82
500

70
500

24
500

63
500

62
500

59
500

3 21
500

21
500

26
500

12
500

2 12
500

15
500

18
500

8
500

3250 8 25
500

66
500

76
500

72
500

21
500

58
500

59
500

55
500

3 20
500

20
500

25
500

10
500

2 10
500

14
500

17
500

7
500

3750 8 23
500

60
500

72
500

72
500

21
500

53
500

54
500

54
500

3 17
500

18
500

24
500

9
500

2 9
500

11
500

14
500

7
500

4250 8 23
500

59
500

70
500

71
500

20
500

49
500

51
500

48
500

3 14
500

16
500

18
500

9
500

2 8
500

10
500

11
500

6
500

4750 8 21
500

56
500

67
500

69
500

18
500

47
500

49
500

45
500

3 13
500

13
500

15
500

8
500

2 7
500

8
500

9
500

5
500

5250 8 18
500

55
500

65
500

68
500

15
500

47
500

48
500

44
500

3 12
500

10
500

13
500

8
500

2 7
500

7
500

7
500

3
500

5750 8 20
500

58
500

66
500

68
500

16
500

45
500

50
500

47
500

3 11
500

9
500

11
500

7
500

2 6
500

7
500

6
500

2
500

6250 8 16
500

57
500

62
500

67
500

11
500

42
500

47
500

52
500

3 9
500

8
500

10
500

7
500

2 5
500

5
500

5
500

2
500

6750 8 14
500

54
500

59
500

67
500

9
500

41
500

45
500

42
500

3 7
500

8
500

8
500

6
500

2 3
500

4
500

4
500

0
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Table A7.9.6: F (kn, nt, β) values in (A7.69) and (A7.72), for scenarios 13-14. B0.15 and B0.25 denotes
the kernel-based approach in Besse et al. [2000], for hn = 0.15, 0.25, respectively. Bq denotes its
penalized prediction approach.

Scenario 13 Scenario 14
nt B0.15 B0.25 Bq B0.15 B0.25 Bq

750 85
500

88
500

6
500

76
500

80
500

3
500

1250 80
500

79
500

6
500

75
500

73
500

3
500

1750 76
500

71
500

5
500

73
500

67
500

2
500

2250 78
500

60
500

4
500

72
500

57
500

3
500

2750 73
500

57
500

4
500

70
500

53
500

3
500

3250 75
500

53
500

2
500

67
500

51
500

2
500

3750 70
500

49
500

2
500

67
500

43
500

1
500

4250 72
500

44
500

1
500

65
500

41
500

0
4750 68

500
39
500

3
500

63
500

38
500

1
500

5250 65
500

496
500

3
500

62
500

33
500

2
500

5750 62
500

34
500

2
500

60
500

31
500

2
500

6250 60
500

33
500

3
500

60
500

28
500

1
500

6750 59
500

33
500

3
500

57
500

24
500

1
500
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Table A7.9.7: F (kn, nt, β) values in (A7.69) and (A7.71), for scenarios PD1 − PD4. B and G denote
the approaches in Bosq [2000]; Guillas [2001], respectively; AS denotes the approach in Antoniadis and
Sapatinas [2003].

Scenario PD1 Scenario PD2 Scenario PD3 Scenario PD4

nt kn B G AS kn B G AS kn B G AS kn B G AS
750 6 135

500
146
500

176
500

6 123
500

129
500

180
500

2 62
500

48
500

41
500

1 50
500

39
500

38
500

1250 7 124
500

130
500

166
500

7 117
500

120
500

175
500

2 60
500

42
500

37
500

2 47
500

36
500

33
500

1750 7 113
500

122
500

159
500

7 104
500

110
500

168
500

2 53
500

36
500

34
500

2 41
500

30
500

31
500

2250 7 89
500

115
500

153
500

7 86
500

91
500

164
500

3 49
500

31
500

29
500

2 35
500

28
500

30
500

2750 7 80
500

100
500

133
500

7 76
500

83
500

149
500

3 44
500

28
500

27
500

2 32
500

28
500

28
500

3250 8 99
500

104
500

139
500

8 71
500

78
500

153
500

3 40
500

26
500

26
500

2 27
500

27
500

25
500

3750 8 67
500

78
500

136
500

8 62
500

67
500

142
500

3 35
500

24
500

25
500

2 24
500

26
500

23
500

4250 8 65
500

74
500

129
500

8 60
500

63
500

133
500

3 30
500

23
500

22
500

2 22
500

22
500

19
500

4750 8 61
500

63
500

127
500

8 55
500

60
500

126
500

3 28
500

19
500

20
500

2 20
500

16
500

13
500

5250 8 48
500

51
500

125
500

8 46
500

49
500

122
500

3 25
500

17
500

16
500

2 17
500

12
500

10
500

5750 8 4
500

49
500

122
500

8 39
500

42
500

113
500

3 20
500

14
500

13
500

2 15
500

7
500

5
500

6250 8 38
500

45
500

118
500

8 33
500

35
500

108
500

3 19
500

13
500

10
500

2 13
500

7
500

3
500

6750 8 36
500

40
500

114
500

8 29
500

31
500

101
500

3 13
500

12
500

9
500

2 10
500

8
500

3
500
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Table A7.9.8: F (kn, nt, β) values in (A7.69) and (A7.72), for scenarios PD1 − PD2. B1.2 and B1.7

denotes the kernel-based approach in Besse et al. [2000], for hn = 1.2, 1.7, respectively. Bq denotes its
penalized prediction approach.

Scenario PD1 Scenario PD2

nt B1.2 B1.7 Bq B1.2 B1.7 Bq

750 174
500

233
500

18
500

167
500

180
500

10
500

1250 158
500

214
500

10
500

151
500

169
500

7
500

1750 149
500

199
500

9
500

133
500

155
500

6
500

2250 146
500

185
500

7
500

130
500

146
500

4
500

2750 131
500

190
500

6
500

127
500

140
500

3
500

3250 129
500

193
500

5
500

119
500

135
500

3
500

3750 125
500

162
500

6
500

115
500

130
500

4
500

4250 138
500

160
500

4
500

109
500

121
500

2
500

4750 133
500

162
500

2
500

108
500

117
500

2
500

5250 120
500

154
500

1
500

107
500

114
500

1
500

5750 118
500

156
500

2
500

104
500

111
500

1
500

6250 116
500

144
500

1
500

99
500

103
500

0
6750 111

500
135
500

0 94
500

100
500

0
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Table A7.9.9: F (kn, nt, β) values in (A7.69) and (A7.71), for scenarios ND1 − ND4. B and G denote
the approaches in Bosq [2000]; Guillas [2001], respectively; AS denotes the approach in Antoniadis and
Sapatinas [2003].

ScenarioND1 ScenarioND2 ScenarioND3 ScenarioND4

nt kn B G AS kn B G AS kn B G AS kn B G AS
750 6 86

500
90
500

88
500

6 80
500

84
500

83
500

2 73
500

66
500

75
500

1 55
500

42
500

60
500

1250 7 81
500

84
500

86
500

7 78
500

81
500

85
500

2 69
500

64
500

71
500

2 48
500

39
500

51
500

1750 7 77
500

80
500

85
500

7 73
500

87
500

86
500

2 64
500

60
500

70
500

2 46
500

32
500

50
500

2250 7 73
500

77
500

86
500

7 68
500

72
500

84
500

3 59
500

56
500

63
500

2 41
500

31
500

46
500

2750 7 70
500

73
500

83
500

7 55
500

70
500

80
500

3 50
500

54
500

55
500

2 37
500

27
500

45
500

3250 8 65
500

68
500

82
500

8 47
500

60
500

78
500

3 47
500

50
500

51
500

2 35
500

25
500

41
500

3750 8 54
500

59
500

80
500

8 43
500

53
500

75
500

3 45
500

43
500

48
500

2 31
500

24
500

37
500

4250 8 51
500

57
500

77
500

8 39
500

46
500

72
500

3 42
500

38
500

40
500

2 27
500

21
500

35
500

4750 8 45
500

51
500

79
500

8 37
500

41
500

73
500

3 35
500

33
500

38
500

2 23
500

17
500

32
500

5250 8 40
500

49
500

73
500

8 33
500

36
500

72
500

3 37
500

35
500

41
500

2 24
500

19
500

34
500

5750 8 38
500

43
500

74
500

8 32
500

34
500

59
500

3 33
500

32
500

37
500

2 19
500

13
500

29
500

6250 8 34
500

37
500

70
500

8 27
500

30
500

69
500

3 30
500

30
500

36
500

2 16
500

10
500

25
500

6750 8 30
500

33
500

68
500

8 25
500

29
500

66
500

3 29
500

25
500

35
500

2 12
500

9
500

21
500
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Table A7.9.10: F (kn, nt, β) values in (A7.69) and (A7.72), for scenarios ND1 − ND2. B1.2 and B1.7

denotes the kernel-based approach in Besse et al. [2000], for hn = 1.2, 1.7, respectively. Bq denotes its
penalized prediction approach.

ScenarioND1 ScenarioND2

nt B1.2 B1.7 Bq B1.2 B1.7 Bq

750 449
500

281
500

7
500

377
500

222
500

5
500

1250 434
500

225
500

5
500

355
500

209
500

4
500

1750 436
500

164
500

5
500

330
500

196
500

4
500

2250 426
500

142
500

4
500

309
500

162
500

3
500

2750 422
500

123
500

3
500

292
500

130
500

3
500

3250 417
500

105
500

3
500

281
500

107
500

2
500

3750 376
500

97
500

3
500

269
500

83
500

2
500

4250 358
500

80
500

2
500

252
500

72
500

1
500

4750 345
500

71
500

1
500

241
500

69
500

0

5250 313
500

61
500

0 230
500

56
500

1
500

5750 262
500

55
500

1
500

215
500

45
500

1
500

6250 240
500

52
500

1
500

203
500

37
500

0

6750 230
500

46
500

0 195
500

32
500

0
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ABSTRACT

This work derives new results on strongly–consistent estimation and prediction, for autoregressive processes of order
one in a Banach separable space B (ARB(1) processes). The consistency results are obtained, in the norm of the
space L(B) of bounded linear operators on B, for the componentwise estimator of the autocorrelation operator.
The strong–consistency of the associated plug–in predictor then follows in theB–norm. AGelfand triple is defined,
involving the Hilbert space constructed in the Kuelbs’s Lemma in Kuelbs [1970]. A nuclear embedding introduces
the Reproducing Kernel Hilbert Space (RKHS), generated by the autocovariance operator, into the Hilbert space
conforming the Rigged–Hilbert–Space structure. This paper extends Bosq [2000]; Labbas and Mourid [2002].

A8.1 Introduction

In the last few decades, there exists a growing interest on the statistical analysis of high–dimensional data,
from the Functional Data Analysis (FDA) perspective. The book by Ramsay and Silverman [2005] provides
an overview on FDA techniques, extended from the multivariate data context, or specifically formulated for
the FDA framework. The monograph by Hsing and Eubank [2015] introduces functional analytical tools
usually applied in the estimation of random elements in function spaces. The book by Horváth and Kokoszka
[2012] is mainly concerned with inference based on second order statistics. A central topic in this book is the
analysis of functional data, displaying dependent structures in time and space. The methodological survey
paper by Cuevas [2014], on the state of the art in FDA, discusses central topics in FDA. Recent advances in
the statistical analysis of high–dimensional data, from the parametric, semiparametric and nonparametric
FDA frameworks, are collected in the Special Issue by Goia and Vieu [2016].

Linear time series models traditionally arise for processing temporal linear correlated data. In the FDA
context, the monograph by Bosq [2000] introduces linear functional time series theory. The RKHS, gener-
ated by the autocovariance operator, plays a crucial role in the estimation approach presented in this mono-
graph. In particular, the eigenvectors of the autocovariance operator are considered for projection (see also
Álvarez-Liébana [2017]). Its empirical version is computed, when they are unknown. The resulting plug–in
predictor is obtained as a linear functional of the observations, based on the empirical approximation of the
autocorrelation operator. This approach exploits the Hilbert space structure, and its extension to the metric
space context, and, in particular, to the Banach space context, requires to deriving a relationship (continuous
embeddings) between the Banach space norm, and the RKHS norm, induced by the autocovariance oper-
ator, in contrast with the nonparametric regression approach for functional prediction (see, for instance,
Ferraty et al. [2012], where asymptotic normality is derived). Specifically, in the nonparametric approach,
a linear combination of the observed response values is usually considered. That is the case of the nonpara-
metric local–weighting–based approach, involving weights defined from an isotropic kernel, depending on
the metric or semi–metric of the space, where the regressors take their values (see, for example, Ferraty and
Vieu [2006]; see also Ferraty et al. [2002], in the functional time series framework). The nonparametric ap-
proach is then more flexible regarding the structure of the space where the functional values of the regressors
lie (usually a semi–metric space is considered). However, some computational drawbacks are present in its
implementation, requiring the resolution of several selection problems. For instance, a choice of the smooth-
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ing parameter, and the kernel involved, in the definition of the weights, should be performed. Real–valued
covariates were incorporated in the novel semiparametric kernel–based proposal by Aneiros-Pérez and Vieu
[2008], involving an extension to the functional partial linear time series framework (see also Aneiros-Pérez
and Vieu [2006]). Goia and Vieu [2015] also adopt a semi–parametric approach in their formulation of a
two–terms Partitioned Functional Single Index Model. Geenens [2011] exploits the alternative provided
by semi–metrics to avoid the curse of infinite dimensionality of some functional estimators.

On the other hand, in a parametric linear framework, Mas and Pumo [2010] introduced functional
time series models in Banach spaces. In particular, strong mixing conditions and the absolute regularity of
Banach–valued autoregressive processes have been studied in Allam and Mourid [2001]. Empirical estima-
tors for Banach–valued autoregressive processes are studied in Bosq [2002], where, under some regularity
conditions, and for the case of orthogonal innovations, the empirical mean is proved to be asymptotically
optimal, with respect to almost surely (a.s.) convergence, and convergence of order two. The empirical au-
tocovariance operator was also interpreted as a sample mean of an autoregressive process in a suitable space
of linear operators. The extension of these results to the case of weakly dependent innovations is obtained
in Dehling and Sharipov [2005]. A strongly–consistent sieve estimator of the autocorrelation operator of a
Banach–valued autoregressive process is considered in Rachedi and Mourid [2003]. Limit theorems for a
seasonality estimator, in the case of Banach autoregressive perturbations, are formulated in Mourid [2002].
Confidence regions for the periodic seasonality function, in the Banach space of continuous functions, is
obtained as well. An approximation of Parzen’s optimal predictor, in the RKHS framework, is applied in
Mokhtari and Mourid [2003], for prediction of temporal stochastic process in Banach spaces. The existence
and uniqueness of an almost surely strictly periodically correlated solution, to the first order autoregressive
model in Banach spaces, is derived in Parvardeh et al. [2017]. Under some regularity conditions, limit re-
sults are obtained for ARD(1) processes in Hajj [2011], whereD = D([0, 1])denotes the Skorokhod space
of right–continuous functions on [0, 1], having limit to the left at each t ∈ [0, 1]. Conditions for the exis-
tence of strictly stationary solutions of ARMA equations in Banach spaces, with independent and identically
distributed noise innovations, are derived in Spangenberg [2013].

In the derivation of strong–consistency results for ARB(1) componentwise estimators and predictors,
Bosq [2000] restricts his attention to the case of the Banach space C([0, 1]) of continuous functions on
[0, 1],with the supremum norm. Labbas and Mourid [2002] considers an ARB(1) context, forB being an
arbitrary real separable Banach space, under the construction of a Hilbert space H̃,whereB is continuously
embedded, as given in the Kuelbs’s Lemma in [Kuelbs, 1970, Lemma 2.1]. Under the existence of a con-
tinuous extension to H̃ of the autocorrelation operator ρ ∈ L(B), Labbas and Mourid [2002] obtain the
strong-consistency of the formulated componentwise estimator of ρ, and of its associated plug–in predictor,
in the norms of L(H̃), and H̃, respectively.

functional data in nuclear spaces, arising, for example, in the observation of the solution to stochastic
fractional and multifractional linear pseudodifferential equations (see, for example, Anh et al. [2016a,b]).
The scales of Banach spaces constituted by fractional Sobolev and Besov spaces play a central role in the
context of nuclear spaces. Continuous (nuclear) embeddings usually connect the elements of these scales
(see, for example, Triebel [1983]). In this paper, a Rigged–Hilbert–Space structure is defined, involving the
separable Hilbert space H̃, appearing in the construction of the Kuelbs’s Lemma in [Kuelbs, 1970, Lemma
2.1]. A key assumption, here, is the existence of a continuous (Hilbert–Schmidt) embedding introduc-
ing the RKHS, associated with the autocovariance operator of the ARB(1) process, into the Hilbert space
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generating the Gelfand triple, equipped with a finer topology than the B–topology. Under this scenario,
strong–consistency results are derived, in the space L(B) of bounded linear operators on B, considering
an abstract separable Banach space framework.

The outline of this paper is as follows. Notation and preliminaries are fixed in Appendix A8.2. Funda-
mental assumptions and some key lemmas are formulated in Appendix A8.3, and proved in Appendix A8.4.
The main result of this paper on strong–consistency is derived in Appendix A8.5. Appendix A8.6 provides
some examples. Final comments on our approach can be found in Appendix A8.7. The Supplementary
Material provides in Appendix A8.8 illustrates numerically the results derived in Appendix A8.5, under the
scenario described in Appendix A8.6, in a simulation study.

A8.2 Preliminaries

Let (B, ∥·∥B) be a real separable Banach space, with the norm ∥·∥B , and let L2
B(Ω,A,P), the space

of zero-meanB–valued random variablesX such that√∫
B

∥X∥2BdP <∞.

ConsiderX = {Xn, n ∈ Z} to be a zero–meanB–valued stochastic process on the basic probability space
(Ω,A,P) satisfying (see Bosq [2000]):

Xn = ρ (Xn−1) + εn, n ∈ Z, ρ ∈ L(B), (A8.1)

where ρ denotes the autocorrelation operator of X. In equation (A8.1), the B–valued innovation process
ε = {εn, n ∈ Z} on (Ω,A,P) is assumed to be strong white noise, uncorrelated with the random ini-
tial condition. Thus, ε is a zero–mean Banach–valued stationary process, with independent and identically
distributed components, and with σ2

ε = E
{
∥εn∥2B

}
< ∞, for each n ∈ Z. Assume that there exists an

integer j0 ≥ 1 such that ∥∥ρj0∥∥L(B)
< 1. (A8.2)

Then, equation (A8.1) admits an unique strictly stationary solution with σ2
X = E

{
∥Xn∥2B

}
< ∞;

i.e., belonging to L2
B(Ω,A,P), given byXn =

∞∑
j=0

ρj (εn−j) , for each n ∈ Z (see Bosq [2000]). Under

(A8.2), the autocovariance operatorC of an ARB(1) processX is defined from the autocovariance operator
ofX0 ∈ L2

B(Ω,A,P), as
C (x∗) = E {x∗(X0)X0} , x∗ ∈ B∗.

The cross–covariance operatorD is given by

D (x∗) = E {x∗(X0)X1} , x∗ ∈ B∗.

Since C is assumed to be a nuclear operator, there exists a sequence {xj, j ≥ 1} ⊂ B such that, for
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every x∗ ∈ B∗ (see [Bosq, 2000, Eq. (6.24), p. 156]):

C(x∗) =
∞∑
j=1

x∗ (xj)xj,
∞∑
j=1

∥xj∥2B <∞.

D is also assumed to be a nuclear operator. Then, there exist sequences {yj, j ≥ 1} ⊂ B and{
x∗∗j , j ≥ 1

}
⊂ B∗∗ such that, for every x∗ ∈ B∗,

D(x∗) =
∞∑
j=1

x∗∗j (x∗)yj,
∞∑
j=1

∥∥x∗∗j ∥∥B∗∗ ∥yj∥ <∞,

(see [Bosq, 2000, Eq. (6.23), p. 156]). Empirical estimators of C and D are respectively given by (see
[Bosq, 2000, Eqs. (6.45) and (6.58), pp. 164–168]), for n ≥ 2,

Cn(x
∗) =

1

n

n−1∑
i=0

x∗ (Xi) (Xi) , Dn(x
∗) =

1

n− 1

n−2∑
i=0

x∗ (Xi) (Xi+1) , x∗ ∈ B∗.

[Kuelbs, 1970, Lemma 2.1], now formulated, plays a key role in our approach.

LemmaA8.2.1 IfB is a real separable Banach spacewith norm∥·∥B , then, there exists an inner product ⟨·, ·⟩H̃
onB such that the norm ∥·∥H̃ , generated by ⟨·, ·⟩H̃ , is weaker than ∥·∥B .The completion ofB under the norm
∥·∥H̃ defines the Hilbert space H̃, whereB is continuously embedded.

Denote by {xn, n ∈ N} ⊂ B, a dense sequence in B, and by {Fn, n ∈ N} ⊂ B∗ a sequence of
bounded linear functionals onB, satisfying

Fn (xn) = ∥xn∥B , ∥Fn∥ = 1, (A8.3)

such that
∥x∥B = sup

n∈N
|Fn(x)| , x ∈ B. (A8.4)

The inner product ⟨·, ·⟩H̃ , and its associated norm, in Lemma A8.2.1, is defined by

⟨x, y⟩H̃ =
∞∑
n=1

tnFn(x)Fn(y), x, y ∈ H̃,

∥x∥2H̃ =
∞∑
n=1

tn {Fn(x)}2 ≤ ∥x∥2B , x ∈ B,

(A8.5)

where {tn, n ∈ N} is a sequence of positive numbers such that
∞∑
n=1

tn = 1.
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A8.3 Main assumptions and preliminary results

In view of Lemma A8.2.1, for every n ∈ Z, Xn ∈ B ↪→ H̃ satisfies a.s.

Xn =
H̃

∞∑
j=1

⟨Xn, vj⟩H̃vj, n ∈ Z,

for any orthonormal basis {vj, j ≥ 1} of H̃.The trace autocovariance operator

C = E

{(
∞∑
j=1

⟨Xn, vj⟩H̃vj

)
⊗

(
∞∑
j=1

⟨Xn, vj⟩H̃vj

)}

of the extended ARB(1) process is a trace operator in H̃, admitting a diagonal spectral representation, in
terms of its eigenvalues {Cj, j ≥ 1} and eigenvectors {ϕj, j ≥ 1}, that provide an orthonormal system
in H̃. Summarizing, in the subsequent developments, the following identities in H̃ will be considered, for
the extended version of ARB(1) processX . For each f, h ∈ H̃,

C(f) =
H̃

∞∑
j=1

Cj ⟨f, ϕj⟩H̃ ϕj (A8.6)

D(h) =
H̃

∞∑
j=1

∞∑
k=1

⟨D(ϕj), ϕk⟩H̃ ⟨h, ϕj⟩H̃ ϕk

Cn(f) =
H̃ a.s.

n∑
j=1

Cn,j ⟨f, ϕn,j⟩H̃ ϕn,j (A8.7)

Cn,j =
a.s.

1

n

n−1∑
i=0

X2
i,n,j, Xi,n,j = ⟨Xi, ϕn,j⟩H̃ , Cn(ϕn,j) =

H̃ a.s.
Cn,jϕn,j

Dn(h) =
H̃ a.s.

∞∑
j=1

∞∑
k=1

⟨Dn(ϕn,j), ϕn,k⟩H̃ ⟨h, ϕn,j⟩H̃ ϕn,k, (A8.8)

where, for n ≥ 2, {ϕn,j, j ≥ 1} is a complete orthonormal system in H̃, and

Cn,1 ≥ Cn,2 ≥ · · · ≥ Cn,n ≥ 0 = Cn,n+1 = Cn,n+2 = . . . .

The following assumption plays a crucial role in the derivation of the main results in this paper.

Assumption A1. ∥X0∥B is a.s. bounded, and the eigenspace Vj, associated with Cj > 0 in (A8.6) is
one-dimensional for every j ≥ 1.
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Under Assumption A1, we can define the following quantities:

a1 = 2
√
2

1

C1 − C2

, aj = 2
√
2max

(
1

Cj−1 − Cj
,

1

Cj − Cj+1

)
, j ≥ 2. (A8.9)

Remark A8.3.1 This assumption can be relaxed to considering multidimensional eigenspaces by redefining the
quantities aj, for each j ≥ 1, as the quantities cj, for each j ≥ 1, given in [Bosq, 2000, Lemma 4.4].

Assumption A2. Let kn such that

Cn,kn > 0, (a.s.) kn → ∞,
kn
n

→ 0, n→ ∞.

Remark A8.3.2 Consider
Λkn = sup

1≤j≤kn
(Cj − Cj+1)

−1. (A8.10)

For n sufficiently large,

kn < C−1
kn

<
1

Ckn − Ckn+1

< akn < Λkn <
kn∑
j=1

aj.

Assumption A3. The following limit holds:

sup
x∈B; ∥x∥B≤1

∥∥∥∥∥ρ(x)−
k∑
j=1

⟨ρ(x), ϕj⟩H̃ ϕj

∥∥∥∥∥
B

→ 0, k → ∞. (A8.11)

Assumption A4. {Cj, j ≥ 1} are such that the inclusion of H(X) into H̃∗ is continuous; i.e.,

H(X) ↪→ H̃∗,

where ↪→denotes, as usual, the continuous embedding, H̃∗ the dual space of H̃ andH(X) the Reproducing
Kernel Hilbert Space associated withC .

Let us consider the closed subspaceH ofB with the norm induced by the inner product ⟨·, ·⟩H defined
as follows:

H =

{
x ∈ B;

∞∑
n=1

{Fn(x)}2 <∞

}
, ⟨f, g⟩H =

∞∑
n=1

Fn(f)Fn(g), f, g ∈ H.(A8.12)

Then, H is continuously embedded into B, and the following remark provides the isometric isomor-
phism established by the Riesz Representation Theorem between the spaces H̃ and its dual H̃∗.
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Remark A8.3.3 Let f ∗, g∗ ∈ H̃∗, and f, g ∈ H̃, such that, for every n ≥ 1, consider Fn(f ∗) =
√
tnFn(f̃),

Fn(g
∗) =

√
tnFn(g̃), and Fn(f̃) =

√
tnFn(f), Fn(g̃) =

√
tnFn(g), for certain f̃ , g̃ ∈ H.Then, the

following identities hold:

⟨f ∗, g∗⟩H̃∗ =
∞∑
n=1

1

tn
Fn(f

∗)Fn(g
∗) =

∞∑
n=1

1

tn

√
tn
√
tnFn(f̃)Fn(g̃) =

⟨
f̃ , g̃
⟩
H

=
∞∑
n=1

tnFn(f)Fn(g) = ⟨f, g⟩H̃ .

LemmaA8.3.1 Under Assumption A4, the following continuous embeddings hold:

H(X) ↪→ H̃∗ ↪→ B∗ ↪→ H ↪→ B ↪→ H̃ ↪→ [H(X)]∗, (A8.13)

where

H̃ =

{
x ∈ B;

∞∑
n=1

tn {Fn(x)}2 <∞

}
, ⟨f, g⟩H̃ =

∞∑
n=1

tnFn(f)Fn(g), f, g ∈ H̃

H =

{
x ∈ B;

∞∑
n=1

{Fn(x)}2 <∞

}
, ⟨f, g⟩H =

∞∑
n=1

Fn(f)Fn(g), f, g ∈ H

H̃∗ =

{
x ∈ B;

∞∑
n=1

1

tn
{Fn(x)}2 <∞

}
, ⟨f, g⟩H̃∗ =

∞∑
n=1

1

tn
Fn(f)Fn(g), f, g ∈ H̃∗

H(X) =
{
x ∈ H̃;

⟨
C−1(x), x

⟩
H̃
<∞

}
,

⟨f, g⟩H(X) =
⟨
C−1(f), g

⟩
H̃
, f, g ∈ C1/2(H̃)

[H(X)]∗ =
{
x ∈ H̃; ⟨C(x), x⟩H̃ <∞

}
⟨f, g⟩[H(X)]∗ = ⟨C(f), g⟩H̃ f, g ∈ C−1/2(H̃).

Proof. Let us consider the following inequalitites, for each x ∈ B,:

∥x∥H̃ =

√√√√ ∞∑
j=1

tn {Fn(x)}2 ≤ ∥x∥B = sup
n≥1

|Fn(x)|,

∥x∥B = sup
n≥1

|Fn(x)| ≤

√√√√ ∞∑
n=1

{Fn(x)}2 = ∥x∥H ≤
∞∑
n=1

|Fn(x)| = ∥x∥B∗ ,

∥x∥B∗ =
∞∑
n=1

|Fn(x)| ≤

√√√√ ∞∑
n=1

1

tn
{Fn(x)}2 = ∥x∥H̃∗ . (A8.14)
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Under Assumption A4 (see also Remark A8.3.3), for every f ∈ C1/2(H̃) = H(X),

∥f∥H(X) =
√

⟨C−1(f), f⟩H̃ ≥ ∥f∥H̃∗ =

√√√√ ∞∑
n=1

1

tn
{Fn(x)}2. (A8.15)

From equations (A8.14)–(A8.15), the inclusions in (A8.13) are continuous.
�

It is well–known that {ϕj, j ≥ 1} is also an orthogonal system inH(X). Futhermore, underAssump-
tion A4, from Lemma A8.3.1,

{ϕj, j ≥ 1} ⊂ H(X) ↪→ H̃∗ ↪→ B∗ ↪→ H.

Therefore, from equation (A8.12), for every j ≥ 1,

∥ϕj∥2H =
∞∑
m=1

{Fm(ϕj)}2 <∞. (A8.16)

The following assumption is now considered on the norm (A8.16):

Assumption A5. The continuous embedding iH(X),H : H(X) ↪→ H belongs to the trace class. That is,

∞∑
j=1

∥ϕj∥2H <∞.

Let {Fm, m ≥ 1} be defined as in Lemma A8.2.1. Assumption A5 leads to

∞∑
j=1

⟨
iH(X),H(ϕj), ϕj

⟩
H
=

∞∑
j=1

∞∑
m=1

{Fm(ϕj)}2 =
∞∑
m=1

Nm <∞, (A8.17)

where, in particular, from equation (A8.17),

Nm =
∞∑
j=1

{Fm(ϕj)}2 <∞, sup
m≥1

Nm = N <∞ (A8.18)

V = sup
j≥1

∥ϕj∥B ≤
∞∑
j=1

∞∑
m=1

{Fm(ϕj)}2 <∞. (A8.19)

The following preliminary results are considered from [Bosq, 2000, Theorem 4.1, pp. 98–99; Corollary
4.1, pp. 100–101; Theorem 4.8, pp. 116–117]).
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LemmaA8.3.2 Under Assumption A1, the following identities hold, for any standard ARH̃(1) process (e.g.,
the extension to H̃ of ARB(1) processX satisfying equation (A8.1)),

∥Cn − C∥S(H̃) = O

((
ln(n)

n

)1/2
)
a.s., ∥Dn −D∥S(H̃) = O

((
ln(n)

n

)1/2
)
a.s.,

(A8.20)

where ∥·∥S(H̃) is the norm in the Hilbert space S(H̃) of Hilbert–Schmidt operators on H̃; i.e., the subspace of
compact operatorsA such that

∞∑
j=1

⟨A∗A(φj), φj⟩H̃ <∞,

for any orthonormal basis {φj, j ≥ 1} of H̃.

LemmaA8.3.3 Under Assumption A1, let {Cj, j ≥ 1} and {Cn,j, j ≥ 1} in (A8.6)– (A8.7), respectively.
Then, (

n

ln(n)

)1/2

sup
j≥1

|Cn,j − Cj| −→ 0 a.s., n→ ∞.

LemmaA8.3.4 (See details in [Bosq, 2000, Corollary 4.3, p. 107]) Under Assumption A1, consider Λkn in
equation (A8.10) satisfying

Λkn = o

((
n

ln(n)

)1/2
)
, n→ ∞.

Then,
sup

1≤j≤kn
∥ϕ′

n,j − ϕn,j∥H̃ −→ 0 a.s., n→ ∞,

where, for j ≥ 1, and n ≥ 2,

ϕ′
n,j = sgn⟨ϕn,j, ϕj⟩H̃ϕj, sgn⟨ϕn,j, ϕj⟩H̃ = 1⟨ϕn,j ,ϕj⟩H̃≥0 − 1⟨ϕn,j ,ϕj⟩H̃<0,

with 1· being the indicator function.

An upper bound for ∥c∥B×B =

∥∥∥∥∥
∞∑
j=1

Cjϕj ⊗ ϕj

∥∥∥∥∥
B×B

is now obtained.
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LemmaA8.3.5 Under Assumption A5, the following inequality holds:

∥c∥B×B = sup
n,m≥1

|C (Fn) (Fm)| ≤ N ∥C∥L(H̃) ,

where N has been introduced in equation (A8.18), L(H̃) denotes the space of bounded linear operators on H̃,
and ∥·∥L(H̃) the usual uniform norm on such a space.

Let us consider the following notation.

c =
H̃⊗H̃

∞∑
j=1

Cjϕ
′
n,j ⊗ ϕ′

n,j =
H̃⊗H̃

∞∑
j=1

Cjϕj ⊗ ϕj, cn =
H̃⊗H̃

∞∑
j=1

Cn,jϕn,j ⊗ ϕn,j.

c− cn =
H̃⊗H̃

∞∑
j=1

Cjϕ
′
n,j ⊗ ϕ′

n,j −
∞∑
j=1

Cn,jϕn,j ⊗ ϕn,j (A8.21)

Remark A8.3.4 From Lemma A8.3.2, for n sufficiently large, there exist positive constantsK1 andK2 such that

K1 ⟨C(φ), φ⟩H̃ ≤ ⟨Cn(φ), φ⟩H̃ ≤ K2 ⟨C(φ), φ⟩H̃ , ∀φ ∈ H̃.

In particular, for every x ∈ H(X) = C1/2(H̃), considering n sufficiently large,

1

K1

⟨
C−1(x), x

⟩
H̃
≥
⟨
C−1
n (x), x

⟩
H̃
≥ 1

K2

⟨
C−1(x), x

⟩
H̃

⇔ 1

K1

∥x∥2H(X) ≥
⟨
C−1
n (x), x

⟩
H̃
≥ 1

K2

∥x∥2H(X). (A8.22)

Equation (A8.22)means that, forn sufficiently large, the norm of the RKHSH(X) ofX is equivalent to the norm
of the RKHS generated byCn, with spectral kernel cn given in (A8.21).

LemmaA8.3.6 Under Assumptions A1 and A4–A5, let us considerΛkn in (A8.10) satisfying√
knΛkn = o

(√
n

ln(n)

)
, n→ ∞, (A8.23)
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where kn has been introduced in Assumption A2. The following a.s. inequality then holds:

∥c− cn∥B×B ≤ max(N,
√
N)
[
∥C − Cn∥L(H̃)

+2max
(√

∥C∥L(H̃),
√
∥Cn∥L(H̃)

)[
sup
l≥1

sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣]

×

√√√√kn8Λ2
kn
∥Cn − C∥2

L(H̃)
+

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃ .

Therefore, ∥c− cn∥B×B →a.s. 0, as n→ ∞.

LemmaA8.3.7 For a standard ARB(1) process satisfying equation (A8.1), under Assumptions A1 and A3–
A5, for n sufficiently large,

sup
1≤j≤kn

∥∥ϕn,j − ϕ′
n,j

∥∥
B

≤ 2

Ckn

[
max(N,

√
N)
[
∥C − Cn∥L(H̃)

+2max
(√

∥C∥L(H̃),
√
∥Cn∥L(H̃)

)(
sup
l≥1

sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣)

×

√√√√kn8Λ2
kn
∥Cn − C∥2

L(H̃)
+

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃


+ sup

1≤j≤kn
∥ϕn,j − ϕ′

n,j∥H̃N∥C∥S(H̃) + V ∥C − Cn∥S(H̃)

]
a.s. (A8.24)

Under (A8.23),
sup

1≤j≤kn

∥∥ϕn,j − ϕ′
n,j

∥∥
B
−→ 0 a.s., n→ ∞.

LemmaA8.3.8 Under Assumption A3, if

kn∑
j=1

∥ϕn,j − ϕ′
n,j∥B →a.s. 0, , n→ ∞,

then

sup
x∈B; ∥x∥B≤1

∥∥∥∥∥ρ(x)−
kn∑
j=1

⟨ρ(x), ϕn,j⟩H̃ ϕn,j

∥∥∥∥∥
B

−→ 0 a.s., n→ ∞. (A8.25)
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Remark A8.3.5 Under the conditions of Lemma A8.3.7, if

k3/2n Λkn = o

(√
n

ln(n)

)
,

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃ = o

(
1

kn

)
, n→ ∞,

then, equation (A8.25) holds.

Let us know consider the projection operators

Π̃kn (x) =
kn∑
j=1

⟨x, ϕn,j⟩H̃ϕn,j, Πkn (x) =
kn∑
j=1

⟨x, ϕ′
n,j⟩H̃ϕ

′
n,j, x ∈ B ⊂ H̃. (A8.26)

Remark A8.3.6 Under the conditions of Remark A8.3.5, let

Π̃knρΠ̃kn =
kn∑
j=1

kn∑
p=1

⟨ρ(ϕn,j), ϕn,p⟩H̃ ϕn,j ⊗ ϕn,p,

then

sup
x∈B; ∥x∥B≤1

∥∥∥∥∥ρ(x)−
kn∑
j=1

kn∑
p=1

⟨x, ϕn,j⟩H̃ ⟨ρ(ϕn,j), ϕn,p⟩H̃ ϕn,p

∥∥∥∥∥
B

−→ 0 a.s., n→ ∞.

A8.4 Proofs of Lemmas

Proof of Lemma A8.3.5

Proof. Applying the Cauchy–Schwarz’s inequality, for every k, l ≥ 1,

|C(Fk, Fl)| =

∣∣∣∣∣
∞∑
j=1

CjFk(ϕj)Fl(ϕj)

∣∣∣∣∣ ≤
√√√√ ∞∑

j=1

Cj[Fk(ϕj)]2
∞∑
p=1

Cp[Fl(ϕp)]2

≤ sup
j≥1

|Cj|

√√√√ ∞∑
j=1

[Fk(ϕj)]2
∞∑
p=1

[Fl(ϕp)]2 = sup
j≥1

|Cj|
√
NkNl,

where {Fn, n ≥ 1} have been introduced in equation (A8.3), and satisfy (A8.4)–(A8.5). UnderAssump-
tion A5, from equation (A8.18),

∥c∥B×B = sup
k,l≥1

|C(Fk, Fl)| ≤ sup
k,l≥1

sup
j≥1

|Cj|
√
NkNl = N sup

j≥1
|Cj| = N∥C∥L(H̃).
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�

Proof of Lemma A8.3.6

Proof. Let us first consider the following identities and inequalities:

|C − Cn(Fk)(Fl)| =

∣∣∣∣∣
∞∑
j=1

CjFk(ϕ
′
n,j)Fl(ϕ

′
n,j)− Cn,jFk(ϕn,j)Fl(ϕn,j)

∣∣∣∣∣
≤

∞∑
j=1

|Cj||Fk(ϕ′
n,j)||Fl(ϕ′

n,j)− Fl(ϕn,j)|

+sup
j

|Cj − Cn,j||Fk(ϕ′
n,j)Fl(ϕn,j)|

+|Cn,jFl(ϕn,j)||Fk(ϕ′
n,j)− Fk(ϕn,j)|

≤

√√√√ ∞∑
j=1

Cj
{
Fk(ϕ′

n,j)
}2 ∞∑

j=1

Cj
{
Fl(ϕ′

n,j)− Fl(ϕn,j)
}2

+ sup
j≥1

|Cj − Cn,j|

√√√√ ∞∑
j=1

{
Fk(ϕ′

n,j)
}2 ∞∑

j=1

{Fl(ϕn,j)}2

+

√√√√ ∞∑
j=1

Cn,j {Fl(ϕn,j)}2
∞∑
j=1

Cn,j
{
Fk(ϕ′

n,j)− Fk(ϕn,j)
}2

≤
√
Nk

√√√√ ∞∑
j=1

Cj
{
Fl(ϕ′

n,j)− Fl(ϕn,j)
}2

+ sup
j≥1

|Cj − Cn,j|
√
Nk

√
Nl

+
√
Nl

√√√√ ∞∑
j=1

Cn,j
{
Fk(ϕ′

n,j)− Fk(ϕn,j)
}2

≤ max(N,
√
N)

√√√√∥C∥L(H̃)

∞∑
j=1

{
Fl(ϕ′

n,j − ϕn,j)
}2

+∥C − Cn∥L(H̃)

+

√√√√∥Cn∥L(H̃)

∞∑
j=1

{
Fk(ϕ′

n,j − ϕn,j)
}2
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≤ max(N,
√
N)
[
∥C − Cn∥L(H̃)

+

√√√√∥C∥L(H̃)

∞∑
j=1

∞∑
m=1

{
Fl(ϕ′

n,m)
}2 {⟨

ϕ′
n,j, ϕ

′
n,m

⟩
H̃
−
⟨
ϕn,j, ϕ′

n,m

⟩
H̃

}2

+

√√√√∥Cn∥L(H̃)

∞∑
j=1

∞∑
m=1

{
Fk(ϕ′

n,m)
}2 {⟨

ϕ′
n,j, ϕ

′
n,m

⟩
H̃
−
⟨
ϕn,j, ϕ′

n,m

⟩
H̃

}2


= max(N,

√
N)
[
∥C − Cn∥L(H̃)

+

√√√√∥C∥L(H̃)

∞∑
m=1

{
Fl(ϕ′

n,m)
}2 ∞∑

j=1

{⟨
ϕ′
n,j, ϕ

′
n,m

⟩
H̃
−
⟨
ϕn,j, ϕ′

n,m

⟩
H̃

}2

+

√√√√∥Cn∥L(H̃)

∞∑
m=1

{
Fk(ϕ′

n,m)
}2 ∞∑

j=1

{⟨
ϕ′
n,j, ϕ

′
n,m

⟩
H̃
−
⟨
ϕn,j, ϕ′

n,m

⟩
H̃

}2


= max(N,

√
N)
[
∥C − Cn∥L(H̃)

+

√√√√∥C∥L(H̃)

∞∑
m=1

{
Fl(ϕ′

n,m)
}2 ∞∑

j=1

{
⟨ϕn,j, ϕn,m⟩H̃ −

⟨
ϕn,j, ϕ′

n,m

⟩
H̃

}2

+

√√√√∥Cn∥L(H̃)

∞∑
m=1

{
Fk(ϕ′

n,m)
}2 ∞∑

j=1

{
⟨ϕn,j, ϕn,m⟩H̃ −

⟨
ϕn,j, ϕ′

n,m

⟩
H̃

}2


= max(N,

√
N)
[
∥C − Cn∥L(H̃)

+

√√√√∥C∥L(H̃)

∞∑
m=1

{
Fl(ϕ′

n,m)
}2 ∥ϕn,m − ϕ′

n,m∥2H̃

+

√√√√∥Cn∥L(H̃)

∞∑
m=1

{
Fk(ϕ′

n,m)
}2 ∥ϕn,m − ϕ′

n,m∥2H̃


≤ max(N,

√
N)
[
∥C − Cn∥L(H̃)

+ sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣√√√√∥C∥L(H̃)

∞∑
m=1

∥ϕn,m − ϕ′
n,m∥2H̃

+ sup
m≥1

∣∣Fk(ϕ′
n,m)

∣∣√√√√∥Cn∥L(H̃)

∞∑
m=1

∥ϕn,m − ϕ′
n,m∥2H̃


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≤ max(N,
√
N)
[
∥C − Cn∥L(H̃)

+max
(√

∥C∥L(H̃),
√

∥Cn∥L(H̃)

)
[
sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣+ sup
m≥1

∣∣Fk(ϕ′
n,m)

∣∣]√√√√ ∞∑
m=1

∥ϕn,m − ϕ′
n,m∥2H̃

 . (A8.27)

Under Assumption A5, from equation (A8.17),

∞∑
m=1

∥ϕn,m − ϕ′
n,m∥2H̃ <∞, sup

m≥1

∣∣Fk(ϕ′
n,m)

∣∣ <∞, k ≥ 1.

Thus, considering kn, as given in Assumption A2,

∞∑
m=1

∥ϕn,m − ϕ′
n,m∥2H̃ =

kn∑
m=1

∥ϕn,m − ϕ′
n,m∥2H̃ +

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃

≤ kn sup
1≤m≤kn

∥ϕn,m − ϕ′
n,m∥2H̃ +

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃

≤ kn8Λ
2
kn∥Cn − C∥2L(H̃)

+
∞∑

m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃ (A8.28)

From equation (A8.20), under Λkn = o

(√
n

ln(n)

)
,

kn8Λ
2
kn∥Cn − C∥2L(H̃)

≤ kn8Λ
2
kn∥Cn − C∥2S(H̃)

→a.s. 0, n→ ∞. (A8.29)

Under Assumption A5,

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃ →a.s. 0, n→ ∞. (A8.30)

From equations (A8.27)–(A8.30), since, under Assumption A5,

sup
k≥1

sup
m≥1

∣∣Fk(ϕ′
n,m)

∣∣ <∞,

we have ∥c− cn∥B×B = supk,l |(C − Cn)(Fk)(Fl)| →a.s. 0, as n→ ∞.
�

Proof of Lemma A8.3.7
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Proof. Let us first consider the following a.s. equalities

Cn,j
(
ϕn,j − ϕ′

n,j

)
= Cn (ϕn,j)− Cn,jϕ

′
n,j = (Cn − C) (ϕn,j)

+ C
(
ϕn,j − ϕ′

n,j

)
+ (Cj − Cn,j)ϕ

′
n,j. (A8.31)

From equation (A8.31), keeping in mind Assumption A2,∥∥ϕn,j − ϕ′
n,j

∥∥
B

≤ 1

Cn,j
∥(Cn − C) (ϕn,j)∥B +

1

Cn,j

∥∥C (ϕn,j − ϕ′
n,j

)∥∥
B

+
1

Cn,j

∥∥(Cj − Cn,j)ϕ
′
n,j

∥∥
B
=

1

Cn,j
[S1 + S2 + S3] , a.s.. (A8.32)

Forn sufficiently large, from Lemmas A8.3.5 and A8.3.6, applying the Cauchy–Schwarz’s inequality, for
every j ≥ 1,

S1 = ∥(Cn − C) (ϕn,j)∥B

= sup
m

∣∣∣∣∣
∞∑
k=1

Cn,kFm(ϕn,k) ⟨ϕn,k, ϕn,j⟩H̃ −
∞∑
k=1

CkFm(ϕ
′
n,k)

⟨
ϕ′
n,k, ϕn,j

⟩
H̃

∣∣∣∣∣
= sup

m

∣∣∣∣∣
∞∑
k=1

∞∑
l=1

tlFl(ϕn,j)
{
Cn,kFm(ϕn,k)Fl(ϕn,k)− CkFm(ϕ

′
n,k)Fl(ϕ

′
n,k)
}∣∣∣∣∣

= sup
m

∣∣∣∣∣
∞∑
l=1

tlFl(ϕn,j)
∞∑
k=1

Cn,kFm(ϕn,k)Fl(ϕn,k)− CkFm(ϕ
′
n,k)Fl(ϕ

′
n,k)

∣∣∣∣∣
≤ sup

m

√√√√ ∞∑
l=1

tl[Fl(ϕn,j)]2

×

√√√√ ∞∑
l=1

tl

{
∞∑
k=1

Cn,kFm(ϕn,k)Fl(ϕn,k)− CkFm(ϕ′
n,k)Fl(ϕ

′
n,k)

}2

≤ ∥ϕn,j∥H̃

√√√√ ∞∑
l=1

tl sup
m,l

∣∣∣∣∣
∞∑
k=1

Cn,kFm(ϕn,k)Fl(ϕn,k)− CkFm(ϕ
′
n,k)Fl(ϕ

′
n,k)

∣∣∣∣∣
= ∥cn − c∥B×B

≤ max(N,
√
N)
[
∥C − Cn∥L(H̃)

+2max
(√

∥C∥L(H̃),
√
∥Cn∥L(H̃)

)[
sup
l≥1

sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣]
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×

√√√√kn8Λ2
kn
∥Cn − C∥2

L(H̃)
+

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃ (A8.33)

S2 =
∥∥C (ϕn,j − ϕ′

n,j

)∥∥
B
= sup

m

∣∣∣∣∣
∞∑
k=1

∞∑
l=1

tlCkFm(ϕ
′
n,k)Fl(ϕ

′
n,k)Fl

(
ϕn,j − ϕ′

n,j

)∣∣∣∣∣
≤ sup

m

√√√√ ∞∑
l=1

tl
{
Fl
(
ϕn,j − ϕ′

n,j

)}2√√√√ ∞∑
l=1

tl

{
∞∑
k=1

CkFm(ϕ′
n,k)Fl(ϕ

′
n,k)

}2

≤ ∥ϕn,j − ϕ′
n,j∥H̃ sup

m,l

∣∣∣∣∣
∞∑
k=1

CkFm(ϕ
′
n,k)Fl(ϕ

′
n,k)

∣∣∣∣∣
= ∥ϕn,j − ϕ′

n,j∥H̃∥c∥B×B ≤ ∥ϕn,j − ϕ′
n,j∥H̃N∥C∥S(H̃), a.s.

(A8.34)

Under Assumption A3,

S3 ≤ sup
j≥1

|Cj − Cn,j|
∥∥ϕ′

n,j

∥∥
B
≤ V ∥C − Cn∥L(H̃) ≤ V ∥C − Cn∥S(H̃), a.s.

(A8.35)

In addition, from Lemma A8.3.2,

∥Cn − C∥S(H̃) →a.s. 0, n→ ∞,

and
Cn,j →a.s. Cj, n→ ∞.

For ε = Ckn/2,we can find n0 such that for n ≥ n0,

∥Cn − C∥L(H̃) ≤ ε = Ckn/2, a.s.
|Cn,kn − Ckn| ≤ ε̃ ≤ ∥Cn − C∥L(H̃)

Cn,kn ≥ Ckn − ε̃ ≥ Ckn − ∥Cn − C∥L(H̃) ≥ Ckn − Ckn/2 ≥ Ckn/2.

(A8.36)

From equations (A8.32)–(A8.35), for n large enough such that equation (A8.36) holds, the following
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almost surely inequalities are satisfied. For 1 ≤ j ≤ kn,

sup
1≤j≤kn

∥∥ϕn,j − ϕ′
n,j

∥∥
B

≤ 1

Cn,kn

[
max(N,

√
N)
[
∥C − Cn∥L(H̃)

+2max
(√

∥C∥L(H̃),
√

∥Cn∥L(H̃)

){
sup
l≥1

sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣}

×

√√√√kn8Λ2
kn
∥Cn − C∥2

L(H̃)
+

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃


+ sup

1≤j≤kn
∥ϕn,j − ϕ′

n,j∥H̃N∥C∥S(H̃) + V ∥C − Cn∥S(H̃)

]
≤ 2

Ckn

[
max(N,

√
N)
[
∥C − Cn∥L(H̃)

+2max
(√

∥C∥L(H̃),
√

∥Cn∥L(H̃)

){
sup
l≥1

sup
m≥1

∣∣Fl(ϕ′
n,m)

∣∣}

×

√√√√kn8Λ2
kn
∥Cn − C∥2

L(H̃)
+

∞∑
m=kn+1

∥ϕn,m − ϕ′
n,m∥2H̃


+ sup

1≤j≤kn
∥ϕn,j − ϕ′

n,j∥H̃N∥C∥S(H̃) + V ∥C − Cn∥S(H̃)

]
a.s.

Hence, equation (A8.24) holds. The a.s. convergence to zero directly follows from Lemma A8.3.2, under
(A8.23).

�

Proof of Lemma A8.3.8

Proof. The following identities are considered:

kn∑
j=1

⟨ρ(x), ϕn,j⟩H̃ ϕn,j −
kn∑
j=1

⟨
ρ(x), ϕ′

n,j

⟩
H̃
ϕ′
n,j

=
kn∑
j=1

⟨ρ(x), ϕn,j⟩H̃ (ϕn,j − ϕ′
n,j) +

kn∑
j=1

⟨
ρ(x), ϕn,j − ϕ′

n,j

⟩
H̃
ϕ′
n,j. (A8.37)
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From equation (A8.37), applying the Cauchy–Schwarz’s inequality, under Assumption A3,

sup
x∈B; ∥x∥B≤1

∥∥∥∥∥
kn∑
j=1

⟨ρ(x), ϕn,j⟩H̃ ϕn,j −
∞∑
j=1

⟨
ρ(x), ϕ′

n,j

⟩
H̃
ϕ′
n,j

∥∥∥∥∥
B

≤ sup
x∈B; ∥x∥B≤1

kn∑
j=1

∥ρ(x)∥H̃∥ϕn,j∥H̃∥ϕn,j − ϕ′
n,j∥B

+∥ρ(x)∥H̃∥ϕn,j − ϕ′
n,j∥H̃∥ϕ

′
n,j∥B

+ sup
x∈B; ∥x∥B≤1

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H̃
ϕ′
n,j

∥∥∥∥∥
B

≤ sup
x∈B; ∥x∥B≤1

∥ρ(x)∥H̃

(
kn∑
j=1

∥ϕn,j − ϕ′
n,j∥B + ∥ϕn,j − ϕ′

n,j∥B sup
j

∥ϕ′
n,j∥B

)

+ sup
x∈B; ∥x∥B≤1

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H̃
ϕ′
n,j

∥∥∥∥∥
B

≤ sup
x∈B; ∥x∥B≤1

∥ρ∥L(H̃)∥x∥H̃(1 + V )
kn∑
j=1

∥ϕn,j − ϕ′
n,j∥B

+ sup
x∈B; ∥x∥B≤1

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H̃
ϕ′
n,j

∥∥∥∥∥
B

≤ ∥ρ∥L(H̃)(1 + V )
kn∑
j=1

∥ϕn,j − ϕ′
n,j∥B

+ sup
x∈B; ∥x∥B≤1

∥∥∥∥∥
∞∑

j=kn+1

⟨
ρ(x), ϕ′

n,j

⟩
H̃
ϕ′
n,j

∥∥∥∥∥
B

→ 0, n→a.s. ∞.

�

A8.5 ARB(1) estimation and prediction. Strong consistency results

For every x ∈ B ⊂ H̃, the following componentwise estimator ρ̃kn of ρwill be considered:

ρ̃kn(x) =
(
Π̃knDnC

−1
n Π̃kn

)
(x) =

(
kn∑
j=1

1

Cn,j
⟨x, ϕn,j⟩H̃Π̃

knDn(ϕn,j)

)
,

where Π̃kn has been introduced in equation (A8.26), andCn, Cn,j, ϕn,j andDn have been defined in equa-
tions (A8.7)–(A8.8), respectively.
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TheoremA8.5.1 LetX be, as before, a standard ARB(1) process. Under the conditions of Lemmas A8.3.7 and
A8.3.8 (see Remark A8.3.5), for all η > 0,

P
(
∥ρ̃kn − ρ∥L(B) ≥ η

)
≤ K exp

(
−nη

2

Qn

)
,

where

Qn = O

{C−1
kn
kn

kn∑
j=1

aj

}2
 , n→ ∞.

Therefore, if

knC
−1
kn

kn∑
j=1

aj = o

(√
n

ln(n)

)
, n→ ∞, (A8.38)

then,
∥ρ̃kn − ρ∥L(B) →a.s 0, n→ ∞.

Proof. For everyx ∈ B, such that∥x∥B ≤ 1, applying the triangle inequality, underAssumptionsA1–A2,

∥Π̃knDnC
−1
n Π̃kn(x)− Π̃knρΠ̃kn(x)∥B ≤ ∥Π̃kn(Dn −D)C−1

n Π̃kn(x)∥B
+ ∥Π̃kn(DC−1

n − ρ)Π̃kn(x)∥B
= S1(x) + S2(x). (A8.39)

Under Assumption A3, considering inequality (A8.36),

S1(x) = ∥Π̃kn(Dn −D)C−1
n Π̃kn(x)∥B

≤

∥∥∥∥∥C−1
n,kn

kn∑
j=1

kn∑
p=1

⟨x, ϕn,j⟩H̃ ⟨(Dn −D)(ϕn,j), ϕn,p⟩H̃ ϕn,p

∥∥∥∥∥
B

≤
∣∣C−1

n,kn

∣∣ kn∑
j=1

kn∑
p=1

∣∣⟨x, ϕn,j⟩H̃∣∣ ∣∣⟨(Dn −D)(ϕn,j), ϕn,p⟩H̃
∣∣ ∥ϕn,p∥B

≤ 2C−1
kn
kn∥Dn −D∥L(H̃)

kn∑
p=1

∥ϕn,p∥B

≤ 2V C−1
kn
k2n∥Dn −D∥S(H̃). (A8.40)

Furthermore, applying the triangle inequality,

S2(x) = ∥Π̃kn(DC−1
n − ρ)Π̃kn(x)∥B

≤ ∥Π̃knDC−1
n Π̃kn(x)− Π̃knDC−1Πkn(x)∥B

+ ∥Π̃knDC−1Πkn(x)− Π̃knρΠ̃kn(x)∥B = S21(x) + S22(x). (A8.41)

387



Under Assumptions A1–A2, C−1 and C−1
n are bounded on the subspaces generated by

{ϕj, j = 1, . . . , kn} and {ϕn,j, j = 1, . . . , kn}, respectively. Consider now

S21(x) = ∥Π̃knDC−1
n Π̃kn(x)− Π̃knDC−1Πkn(x)∥B

=

∥∥∥∥∥
kn∑
j=1

kn∑
p=1

1

Cn,j

⟨
x, ϕn,j − ϕ′

n,j

⟩
H̃
⟨D(ϕn,j), ϕn,p⟩H̃ ϕn,p

+
kn∑
j=1

kn∑
p=1

(
1

Cn,j
− 1

Cj

)⟨
x, ϕ′

n,j

⟩
H̃
⟨D(ϕn,j), ϕn,p⟩H̃ ϕn,p

+
kn∑
j=1

kn∑
p=1

1

Cj

⟨
x, ϕ′

n,j

⟩
H̃

⟨
D(ϕn,j − ϕ′

n,j), ϕn,p
⟩
H̃
ϕn,p

∥∥∥∥∥
B

≤
kn∑
j=1

kn∑
p=1

∣∣∣∣ 1

Cn,kn

∣∣∣∣ ∥ϕn,j − ϕ′
n,j∥H̃∥D∥L(H̃)∥ϕn,p∥B

+

∣∣∣∣ 1

Cn,j
− 1

Cj

∣∣∣∣ ∥D∥L(H̃)∥ϕn,p∥B

+

∣∣∣∣ 1Cj
∣∣∣∣ ∥D∥L(H̃)∥ϕn,j − ϕ′

n,j∥H̃∥ϕn,p∥B. (A8.42)

From [Bosq, 2000, Lemma 4.3, p. 104], for every j ≥ 1, under Assumption A1,

∥ϕn,j − ϕ′
n,j∥H̃ ≤ aj∥Cn − C∥L(H̃), (A8.43)

where {aj, j ≥ 1} has been introduced in (A8.9), for j ≥ 1.Then, in equation (A8.42), considering again
inequality (A8.36), keeping in mind thatC−1

j ≤ aj,we obtain

S21(x) ≤ 4C−1
kn

kn∑
p=1

∥ϕn,p∥B∥D∥L(H̃)∥Cn − C∥L(H̃)

kn∑
j=1

aj

≤ 4V knC
−1
kn

∥D∥L(H̃)∥Cn − C∥S(H̃)

kn∑
j=1

aj. (A8.44)
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Applying again the triangle and the Cauchy–Schwarz inequalities, from (A8.43),

S22 = ∥Π̃knDC−1Πkn(x)− Π̃knρΠ̃kn(x)∥B

=

∥∥∥∥∥
kn∑
j=1

kn∑
p=1

⟨
x, ϕ′

n,j − ϕn,j
⟩
H̃

⟨
ρ(ϕ′

n,j), ϕn,p
⟩
H̃
ϕn,p

+ ⟨x, ϕn,j⟩H̃
⟨
ρ(ϕ′

n,j − ϕn,j), ϕn,p
⟩
H̃
ϕn,p

∥∥∥
≤

kn∑
j=1

kn∑
p=1

∥x∥H̃∥ϕ
′
n,j − ϕn,j∥H̃∥ρ∥L(H̃)∥ϕ

′
n,j∥H̃∥ϕn,p∥H̃∥ϕn,p∥B

+∥x∥H̃∥ϕn,j∥H̃∥ρ∥L(H̃)∥ϕ
′
n,j − ϕn,j∥H̃∥ϕn,p∥H̃∥ϕn,p∥B

≤ 2∥ρ∥L(H̃)∥Cn − C∥S(H̃)

(
kn∑
p=1

∥ϕn,p∥B

)(
kn∑
j=1

aj

)

≤ 2V ∥ρ∥L(H̃)∥Cn − C∥S(H̃)kn

kn∑
j=1

aj. (A8.45)

From equations (A8.39)–(A8.45),

sup
x∈B; ∥x∥B≤1

∥Π̃knDnC
−1
n Π̃kn(x)− Π̃knρΠ̃kn(x)∥B

≤ 2V C−1
kn
k2n∥Dn −D∥S(H̃)

+∥Cn − C∥S(H̃)2V kn

kn∑
j=1

aj

(
2C−1

kn
∥D∥L(H̃) + ∥ρ∥L(H̃)

)
. (A8.46)

From equation (A8.46), applying now [Bosq, 2000, Theorem 4.2, p. 99; Theorem 4.8, p. 116], one can
get, for η > 0,
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P

(
sup

x∈B; ∥x∥B≤1

∥Π̃knDnC
−1
n Π̃kn(x)− Π̃knρΠ̃kn(x)∥B > η

)

≤ P

(
sup

x∈B; ∥x∥B≤1

S1(x) > η

)
+ P

(
sup

x∈B; ∥x∥B≤1

S21(x) + S22(x) > η

)

≤ P

(
∥Dn −D∥S(H̃) >

η

2V C−1
kn
k2n

)

+P

∥Cn − C∥S(H̃) >
η

2V kn

kn∑
j=1

aj

[
2C−1

kn
∥D∥L(H̃) + ∥ρ∥L(H̃)

]


≤ 8 exp

− nη2(
2V C−1

kn
k2n
)2(

γ + δ

(
η

2V C−1
kn
k2n

))
+ 4 exp

(
−nη

2

Qn

)
, (A8.47)

with γ and δ being positive numbers, depending on ρ and Pε0 , respectively, introduced in [Bosq, 2000,
Theorems 4.2 and 4.8]. Here,

Qn = 4V 2k2n

(
kn∑
j=1

aj

)2 [
2C−1

kn
∥D∥L(H̃) + ∥ρ∥L(H̃)

]2

×

α1 + β1
η

2V kn

kn∑
j=1

aj

[
2C−1

kn
∥D∥L(H̃) + ∥ρ∥L(H̃)

]
 , (A8.48)

where againα1 andβ1 are positive constants depending onρ andPε0 , respectively. From equations (A8.47)
and (A8.48), if

knC
−1
kn

kn∑
j=1

aj = o

(√
n

ln(n)

)
, n→ ∞,

then, the Borel–Cantelli lemma, and Lemma A8.3.8 and Remarks A8.3.5– A8.3.6 lead to the desired a.s.
convergence to zero.

�
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Corollary A8.5.1 Under the conditions ofTheorem A8.5.1,

∥ρ̃kn(Xn)− ρ(Xn)∥B →a.s. 0, n→ ∞.

The proof is straightforward from Theorem A8.5.1, since

∥ρ̃kn(Xn)− ρ(Xn)∥B ≤ ∥ρ̃kn − ρ∥L(B)∥X0∥B →a.s 0, n→ ∞,

under Assumption A1.

A8.6 Examples: wavelets in Besov and Sobolev spaces

It is well–known that wavelets provide orthonormal bases ofL2(R), and unconditional bases for several
function spaces including Besov spaces,{

Bs
p,q, s ∈ R, 1 ≤ p, q ≤ ∞

}
.

Sobolev or Hölder spaces constitute interesting particular cases of Besov spaces (see, for example, Triebel
[1983]). Consider now orthogonal wavelets on the interval [0, 1]. Adapting wavelets to a finite interval re-
quires some modifications as described in Cohen et al. [1993]. Let s > 0, for an [s] + 1-regular Multires-
olution Analysis (MRA) of L2([0, 1]), where [·] stands for the integer part, the father φ and the mother ψ
wavelets are such thatφ, ψ ∈ C [s]+1([0, 1]).Alsoφ and its derivatives, up to order [s]+ 1, have a fast decay
(see [Daubechies, 1988, Corollary 5.2]). Let2J ≥ 2([s]+1), the construction in Cohen et al. [1993] starts
from a finite set of 2J scaling functions

{
φJ,k, k = 0, 1, . . . , 2J − 1

}
. For each j ≥ J, a set 2j wavelet

functions {ψj,k, k = 0, 1, . . . , 2j − 1} are also considered. The collection of these functions,{
φJ,k, k = 0, 1, . . . , 2J − 1

}
,
{
ψj,k, k = 0, 1, . . . , 2j − 1

}
, j ≥ J,

form a complete orthonormal system ofL2 ([0, 1]) .The associated reconstruction formula is given by:

f(t) =
2J−1∑
k=0

αfJ,kφJ,k(t) +
∑
j≥J

2j−1∑
k=0

βfj,kψj,k(t), ∀t ∈ [0, 1], ∀f ∈ L2 ([0, 1]) , (A8.49)

where

αfJ,k =

∫ 1

0

f(t)φJ,k(t)dt, k = 0, . . . , 2J − 1,

βfj,k =

∫ 1

0

f(t)ψj,k(t)dt, k = 0, . . . , 2j − 1, j ≥ J.

The Besov spacesBs
p,q([0, 1]) can be characterized in terms of wavelets coefficients. Specifically, denote

by S ′ the dual of S, the Schwarz space, f ∈ S ′ belongs toBs
p,q([0, 1]), s ∈ R, 1 ≤ p, q ≤ ∞, if and only
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if

∥f∥sp,q ≡ ∥φ ∗ f∥p +

(
∞∑
j=1

(
2js∥ψj ∗ f∥p

)q)1/q

<∞. (A8.50)

For β > 1/2, consider T : H−β
2 ([0, 1]) −→ Hβ

2 ([0, 1]) be a self–adjoint positive operator on
L2([0, 1]), belonging to the unit ball of trace operators onL2([0, 1]). Assume that

T : H−β
2 ([0, 1]) −→ Hβ

2 ([0, 1]), T −1 : Hβ
2 ([0, 1]) −→ H−β

2 ([0, 1])

are bounded linear operators. In particular, there exists an orthonormal basis {vk, k ≥ 1} of L2([0, 1])

such that, for every l ≥ 1, T (vl) = tlvl, with
∑
l≥1

tl = 1. In what follows, consider {vl, l ≥ 1} to be a

wavelet basis, and define the kernel t of T as, for s, t ∈ [0, 1],

t(s, t) =
1

2J

2J−1∑
k=0

φJ,k(s)φJ,k(t) +
22β − 1

22β(1−J)

∑
j≥J

2j−1∑
k=0

2−2jβψj,k(s)ψj,k(t). (A8.51)

In Lemma A8.2.1,

{Fm} = {Fφ
J,k, k = 0, . . . , 2J − 1} ∪ {Fψ

j,k, k = 0, . . . , 2j − 1, j ≥ J}

are then defined as follows:

Fφ
J,k = φJ,k, k = 0, . . . , 2J − 1

Fψ
j,k = ψj,k, k = 0, . . . , 2j − 1, j ≥ J. (A8.52)

Furthermore, the sequence

{tm} = {tφJ,k, k = 0, . . . , 2J − 1} ∪ {tψj,k, k = 0, . . . , 2j − 1, j ≥ J},

involved in the definition of the inner product in H̃, is given by:

tφJ,k =
1

2J
, k = 0, . . . , 2J−1.

tψj,k =
22β − 1

22β(1−J)
2−2jβ, k = 0, . . . , 2j−1, j ≥ J. (A8.53)

In view of [Angelini et al., 2003, Proposition 2.1], the choice (A8.52)–(A8.53) of {Fm} and {tm} leads
to the definition of

H̃ = [Hβ
2 ([0, 1])]

∗ = H−β
2 ([0, 1]),

constituted by the restriction to [0, 1] of the tempered distributions g ∈ S ′(R), such that
(I −∆)−β/2g ∈ L2(R),with (I −∆)−β/2 denoting the Bessel potential of order β (see Triebel [1983]).
Let now define B = B0

∞,∞([0, 1], ) and B∗ = B0
1,1([0, 1]). From equation (A8.50), the corresponding
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norms, in term of the discrete wavelet transform introduced in equation (A8.49), are given by, for every
f ∈ B,

∥f∥B = sup
{∣∣∣αfJ,k∣∣∣ , k = 0, . . . , 2J−1;

∣∣∣βfj,k∣∣∣ , k = 0, . . . , 2j − 1; j ≥ J
}

(A8.54)

∥g∥B∗ =
2J−1∑
k=0

∣∣αgJ,k∣∣+ ∞∑
j=J

2j−1∑
k=0

∣∣βgj,k∣∣ , ∀g ∈ B∗. (A8.55)

Therefore,

B∗ = B0
1,1([0, 1]) ↪→ H = L2([0, 1]) ↪→ B = B0

∞,∞ ↪→ H̃ = H−β
2 ([0, 1]). (A8.56)

Also, for β > 1/2,

H̃∗ = Hβ([0, 1]) ↪→ B∗ = B0
1,1([0, 1]).

Forγ > 2β, consider the operatorC = (I−∆)−γ ; i.e., given by the2γ/β power of the Bessel potential
of order β, restricted to L2([0, 1]). From spectral theorems on spectral calculus (see Triebel [1983]), for
every g ∈ C1/2

(
H−β([0, 1])

)
,

∥g∥2H(X) =
⟨
C−1(f), f

⟩
H−β([0,1])

=
⟨
(I −∆)−β/2

(
C−1(f)

)
, (I −∆)−β/2 (f)

⟩
L2([0,1])

=
∞∑
j=1

f 2
j λj

(
(I −∆)(γ−β)

)
≥

∞∑
j=1

f 2
j λj

(
(I −∆)β

)
= ∥f∥2Hβ([0,1]) = ∥f∥2

H̃∗ ,

(A8.57)

where

fj =

∫ 1

0

(I −∆)−β/2(f)(s)(I −∆)−β/2(ϕj)(s)ds,

with {ϕj, j ≥ 1} denoting the eigenvectors of the Bessel potential (I − ∆)−β/2 of order β, restricted to
L2([0, 1]), and {λj

(
(I −∆)γ−β

)
, j ≥ 1} being the eigenvalues of (I −∆)−βC−1 onL2([0, 1]).Thus,

Assumption A4 holds. Furthermore, from embedding theorems between fractional Sobolev spaces (see
Triebel [1983]), Assumption A5 also holds, under the condition γ > 2β > 1, considering
H = L2([0, 1]).

A8.7 Final comments

Appendix A8.6 illustrates the motivation of the presented approach in relation to functional predic-
tion in nuclear spaces. Specifically, the current literature on ARB(1) prediction has been developed for
B = C[0, 1], the space of continuous functions on [0, 1], with the supremum norm (see, for instance,
Álvarez-Liébana et al. [2016]; Bosq [2000]), and B = D([0, 1]), constituted by the right–continuous
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functions on [0, 1], having limit to the left at each t ∈ [0, 1], with the Skorokhod topology (see, for ex-
ample, Hajj [2011]). This paper provides a more flexible framework, where functional prediction can be
performed, in a consistent way, for instance, in nuclear spaces, as follows from the continuous inclusions
showed in Appendix A8.6.

Note that the two above–referred usual Banach spaces,C[0, 1] andD([0, 1]), are included in the Banach
spaceB considered in Appendix A8.6 (see Supplementary Material in Appendix A8.8 about the simulation
study undertaken).

A8.8 SupplementaryMaterial

This document provides the Supplementary Material to the current paper. Specifically, a simulation
study is undertaken to illustrate the results derived, on strong consistency of functional predictors, in abstract
Banach spaces, from the ARB(1) framework. The results are also illustrated in the case of discretely observed
functional data.

A8.8.1 Simulation study

∥f∥B = sup
{∣∣∣αfJ,k∣∣∣ , k = 0, . . . , 2J−1;

∣∣∣βfj,k∣∣∣ , k = 0, . . . , 2j − 1; j = J, . . . ,M
}

(A8.58)

where

αfJ,k =

∫ 1

0

f(t)φJ,k(t)dt, k = 0, . . . , 2J − 1,

βfj,k =

∫ 1

0

f(t)ψj,k(t)dt, k = 0, . . . , 2j − 1, j ≥ J.

Thus, equation (A8.58) corresponds to the choiceB = B0
∞,∞([0, 1]),when resolution levelM is fixed

for truncation. Therefore,B∗ = B0
1,1([0, 1]) is considered with the truncated norm

∥g∥B∗ =
2J−1∑
k=0

∣∣αgJ,k∣∣+ M∑
j=J

2j−1∑
k=0

∣∣βgj,k∣∣ , g ∈ B∗,

(A8.59)

where {αgJ,k} and {βgj,k} are the respective father and mother wavelet coefficients of function g. Further-
more, as given in Appendix A8.6 of the manuscript,

H̃∗ = Hβ
2 ([0, 1]) = Bβ

2,2([0, 1]), H̃ = H−β
2 ([0, 1]) = B−β

2,2 ([0, 1]),

for β > 1/2. Since Daubechies wavelets of order N = 10 are selected as orthogonal wavelet basis, with
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N = 10 vanishing moments, according to [Angelini et al., 2003, p. 271 and Lemma 2.1], and [Antoniadis
and Sapatinas, 2003, p. 153], we have considered J = 2, and M = ⌈log2(L/2)⌉ = 10, for L = 211

nodes, in the discrete wavelet transform applied. In addition, value β = 6/10 > 1/2 has been tested, with
γ = 2β + ϵ, ϵ = 0.01 (see definition above of the extended version of operatorC on H̃ = H−β([0, 1])).
The covariance kernel is now displayed in Figure A8.8.1 (see [Dautray and Lions, 1990, pp. 119–140] and
[Grebenkov and Nguyen, 2013, p. 6]).
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Figure A8.8.1: Covariance kernel defining C, generated with discretization step size ∆h = 0.0372.

UnderAssumptionA3, operator ρ admits the following extended representation in H̃ = H−β([0, 1]),
and inB :

⟨ρ(ϕj), ϕh⟩H−β([0,1]) =

{
(1 + j)−1.5 j = h

e−|j−h|/W j ̸= h
,

OperatorCε also admits, in this case, the following extended version in H̃ = H−β([0, 1]) :

⟨Cε(ϕj), ϕh⟩H−β([0,1]) =

{
Cj
(
1− ρ2j,j

)
j = h

e−|j−h|2/W 2
j ̸= h

,

beingW = 0.4.

A8.8.1.1 Large-sample behaviour of the ARB(1) plug-in predictor
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The ARB(1) process is generated with discretization step size ∆h = 0.0372. The resulting functional
values of ARB(1) processX are showed in Figure A8.8.2 for sample sizes

nt = [2500, 5000, 15000, 25000, 40000, 55000, 80000, 100000, 130000, 165000] .

In this section (but not in the next one), the generated discrete values are interpolated and smoothed, ap-
plying the ’cubicspline’ option in ’fit.m’ MatLab function, with, as commented before, the number of nodes
L = 211 = 2048, thenM = 10, and∆h̃ = 0.0093. In the following computations,N = 250 replications
are generated for each functional sample size, and kn = ln(n) has been tested.

The random initial condition X0 has been generated from a truncated zero–mean Gaussian distribu-
tion. Figure A8.8.3 illustrates the fact that Assumption A1 holds, and Figure A8.8.4 is displayed to check
Assumption A2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure A8.8.2: Functional values Xt, for sample sizes [2.5, 5, 15, 25, 40, 55, 80, 100, 130, 165] × 103 and
discretization step size ∆h = 0.0372.
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Figure A8.8.3: A set of 100 values of ∥X0 (ωl)∥B , l = 1, . . . , 100, (blue dotted line) are generated, for
discretization step ∆h = 0.0372.
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Figure A8.8.4: Assumption A2 is checked for sample sizes nt = 35000 (blue line) and nt = 395000
(orange dotted line), displaying the decay rate of empirical eigenvalues {Cn,j , j = 3, . . . , kn}, being
kn = ⌈ln(n)⌉.

Condition (A8.38) in Theorem A8.5.1 has been checked as well (see Figure A8.8.5).
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Figure A8.8.5: Values for

knC
−1
kn

kn∑
j=1

aj

(n1/2 (ln(n))−1/2
)−1

, tested for truncation parameters kn =

30, . . . , 40, linked to sample sizes by the truncation rule kn = ln(n).

To illustrate Theorem A8.5.1 and Corollary A8.5.1, Table A8.8.1 displays the proportion of values of the
random variable

∥∥∥ρ (Xnt)− X̂nt+1

∥∥∥
B

that are larger than the upper bound

ξnt = exp


−nt

C−2
knt
k2nt

 knt∑
j=1

aj

2


, t = 1, . . . , 10, (A8.60)

from the 250 values generated, for each functional sample size nt, t = 1, . . . , 10, reflected below.
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Table A8.8.1: Proportion of simulations whose error B-norm is larger than the upper bound in equation
(A8.60). Truncation parameter kn = ln(n) and N = 250 realizations have been considered, for each
functional sample size.

nt

n1 = 2500 13
250

n2 = 5000 11
250

n3 = 15000 7
250

n4 = 25000 4
250

n5 = 40000 2
250

n6 = 55000 1
250

n7 = 80000 0

n8 = 100000 1
250

n9 = 130000 0

n10 = 165000 0

Figure A8.8.6 below illustrates the asymptotic efficiency. The curve n−1/4 is also displayed (red dotted
line).

×10
4
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Figure A8.8.6: Asymptotic efficiency. Empirical mean-square error (blue solid line)
E

{∥∥∥ρ (Xnt)− X̂nt+1

∥∥∥2
B

}
, based on N = 250 simulations. The curve n−1/4 is also drawn (red

dotted line).
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A8.8.1.2 Asymptotic behaviour of discretely observed ARB(1) processes

The results in Theorem A8.5.1 and Corollary A8.5.1 are now tested for different discretization step sizes:{
∆hr =

(
28+r − 1

)−1
, r = 1, . . . , 7

}
, ∆hr −→r→∞ 0,

that is,

∆h1 = 1.96
(
10−3

)
, ∆h2 = 9.78

(
10−4

)
,

∆h3 = 4.89
(
10−4

)
, ∆h4 = 2.44

(
10−4

)
,

∆h5 = 1.22
(
10−4

)
, ∆h6 = 6.10

(
10−5

)
,

∆h7 = 3.06
(
10−5

)
.

Due to computational limitations involved in the smallest discretization step sizes, we restrict our atten-
tion here to the sample sizes

{nt = 5000 + 10000 (t− 1) , t = 1, 2, 3} ,

andN = 120 realizations have been generated, for each functional sample size. The same nodes are consid-
ered as in the previous section, in the implementation of the discrete wavelet transform, without previous
smoothing of the discretely generated data.

Table A8.8.2 displays the results obtained on the proportion of values, from the 120 generated values,∥∥∥ρ (Xh,r
nt

)
− X̂h,r

nt+1

∥∥∥
B
, h = 1, . . . , 120,

that are larger than the upper bound (A8.60), considering different discretization step sizes, for each sample
size

{nt = 5000 + 10000 (t− 1) , t = 1, 2, 3} ,

and for the corresponding truncation orders {knt = ln(nt), t = 1, 2, 3} .
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TableA8.8.2: Proportions of simulations whose error B-norms are larger than the upper bound in (A8.60),
for sample sizes n = [5000, 15000, 35000]. Truncation parameter kn = ln(n) has been considered. For
each one of the functional sample sizes, the results displayed correspond to discretization step sizes{
∆hr =

(
28+r − 1

)−1
, r = 1, . . . , 7

}
. We have generated N = 120 simulations, for each sample and

discretization step size.

n1 = 5000 n2 = 15000 n3 = 35000

∆h1 = 1.96
(
10−3

)
12
120

7
120

6
120

∆h2 = 9.78
(
10−4

)
8

120
4

120
4

120

∆h3 = 4.89
(
10−4

)
4

120
2

120
2

120

∆h4 = 2.44
(
10−4

)
2

120
1

120
1

120

∆h5 = 1.22
(
10−4

)
2

120
1

120 0

∆h6 = 6.10
(
10−5

)
1

120 0 0

∆h7 = 3.06
(
10−5

)
1

120 0 0
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