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Abstract

This document provides the Supplementary Material to the paper entitled
Strongly-consistent autoregressive predictors in abstract Banach spaces. Specif-
ically, a simulation study is undertaken to illustrate the results derived, on
strong consistency of functional predictors, in abstract Banach spaces, from
the ARB(1) framework. The results are also illustrated in the case of dis-
cretely observed functional data.
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1. Simulation study

The sequences {Fm} and {tm}, appearing in the formulation of
Lemma 1, are defined in equations (52)–(54) of Section 6 of the manuscript.
They define an orthogonal wavelet basis in L2([0, 1]), the space H in Lemma
2. In the simulation study undertaken, we have selected the Daubechies
wavelet basis of order N = 10, providing The norm ‖·‖B of our Banach space
B = B∞,∞([0, 1]) is then computed from equation (55) in the manuscript as
follows: For a coarser resolution level J up to a resolution given by the
truncation parameter M : For every f ∈ B,

‖f‖B = sup
{∣∣∣αfJ,k∣∣∣ , k = 0, . . . , 2J−1;

∣∣∣βfj,k∣∣∣ , k = 0, . . . , 2j − 1; j = J, . . . ,M
}

(1)
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where

αfJ,k =

∫ 1

0

f(t)ϕJ,k(t)dt, k = 0, . . . , 2J − 1,

βfj,k =

∫ 1

0

f(t)ψj,k(t)dt k = 0, . . . , 2j − 1, j ≥ J.

Thus, equation (1) corresponds to the choice B = B0
∞,∞([0, 1]), when

resolution level M is fixed for truncation. Therefore, B? = B0
1,1([0, 1]) is

considered with the truncated norm

‖g‖B? =
2J−1∑
k=0

∣∣αgJ,k∣∣+
M∑
j=J

2j−1∑
k=0

∣∣βgj,k∣∣ , ∀g ∈ B?,

(2)

where {αgJ,k} and {βgj,k} are the respective father and mother wavelet coef-
ficients of function g (see also equation (56) of the manuscript). Further-
more, as given in Section 6 of the manuscript (see also equation (52)),

H̃? = Hβ
2 ([0, 1]) = Bβ

2,2([0, 1]), and H̃ = H−β2 ([0, 1]) = B−β2,2 ([0, 1]), for
β > 1/2. Since Daubechies wavelets of order N = 10 are selected as or-
thogonal wavelet basis, with N = 10 vanishing moments, according to [2,
p. 271 and Lemma 2.1], and [3, p. 153], we have considered J = 2, and
M = dlog2(L/2)e = 10, for L = 211 nodes, in the discrete wavelet trans-
form applied. In addition, value β = 6/10 > 1/2 has been tested, with
γ = 2β + ε, ε = 0.01 (see definition of the extended version of operator C

on H̃ = H−β([0, 1]), in Section 6, in equation (58)). The covariance kernel is
now displayed in Figure 1 (see [6, pp. 119–140] and [7, p. 6]).
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Figure 1: Covariance kernel defining C, generated with discretization step size ∆h =
0.0372.

Under Assumption A3, operator ρ admits the following extended rep-
resentation in H̃ = H−β([0, 1]), and in B :

〈ρ(φj), φh〉H−β([0,1]) =

{
(1 + j)−1.5 j = h

e−|j−h|/W j 6= h
,

Operator Cε also admits, in this case, the following extended version in H̃ =
H−β([0, 1]) :

〈Cε(φj), φh〉H−β([0,1]) =

{
Cj
(
1− ρ2j,j

)
j = h

e−|j−h|
2/W 2

j 6= h
,

being W = 0.4.

1.1. Large-sample behaviour of the ARB(1) plug-in predictor

The ARB(1) process is generated with discretization step size ∆h =
0.0372. The resulting functional values of ARB(1) process X are showed
in Figure 2 at the times

t = [2500, 5000, 15000, 25000, 40000, 55000, 80000, 100000, 130000, 165000] .

In this section (but not in the next section), the generated discrete values
are interpolated and smoothed, applying the ’cubicspline’ option in ’fit.m’
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MatLab function, with, as commented before, the number of nodes L =
211 = 2048, then M = 10, and ∆h̃ = 0.0093. In the following computations,
N = 250 replications are generated for each functional sample size, and
kn = ln(n) has been tested.

The random initial condition X0 has been generated from a truncated zero
mean Gaussian distribution. Figure 3 illustrates the fact that Assumption
A1 holds, and Figure 4 is displayed to check Assumption A2.
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Figure 2: Functional values Xt, for t(10−3) = 2, 5, 5, 15, 25, 40, 55, 80, 100, 130, 165 and
discretization step size ∆h = 0.0372.
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Figure 3: 100 values, ‖X0 (ωl)‖B , l = 1, . . . , 100, (blue dotted line) are generated, for
discretization step ∆h = 0.0372.
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Figure 4: Assumption A2 is checked for sample sizes nt = 35000 (blue line) and
nt = 395000 (orange dotted line), displaying the decay rate of empirical eigenvalues
{Cn,j , j = 3, . . . , kn}, being kn = dln(n)e.

Condition (39) in Theorem 1 has been checked as well (see Figure 5).
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Figure 5: Values for

knC−1
kn

kn∑
j=1

aj

(n1/2 (ln(n))
−1/2

)−1

, tested for truncation param-

eters kn = 30, . . . , 40, linked to sample sizes by the truncation rule kn = ln(n).

To illustrate Theorem 1 and Corollary 1 in the paper, Table 1 displays

the proportion of values of the random variable
∥∥∥ρ (Xnt)− X̂nt+1

∥∥∥
B

that are
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larger than the upper bound

ξnt = exp


−nt

C−2kntk
2
nt

 knt∑
j=1

aj

2


, t = 1, . . . , 10, (3)

from the 250 values generated, for each functional sample size nt, t = 1, . . . , 10,
reflected below.

Table 1: Proportion of simulations whose error B-norm is larger than the upper bound
in equation (3). Truncation parameter kn = ln(n), and N = 250 realizations have been
considered, for each functional sample size.

nt
n1 = 2500 13

250

n2 = 5000 11
250

n3 = 15000 7
250

n4 = 25000 4
250

n5 = 40000 2
250

n6 = 55000 1
250

n7 = 80000 0

n8 = 100000 1
250

n9 = 130000 0

n10 = 165000 0

Figure 6 below illustrates the asymptotic efficiency. The curve n−1/4 is
also displayed (red dotted line).
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Figure 6: Asymptotic efficiency. Empirical mean-square error (blue solid line)

E

{∥∥∥ρ (Xnt)− X̂nt+1

∥∥∥2
B

}
, based on N = 250 simulations. The curve n−1/4 is also drawn

(red dotted line).

1.2. Asymptotic behaviour of discretely observed ARB(1) processes

The results in Theorem 1 and Corollary 1 are now tested for different
discretazitation step sizes:{

∆hr =
(
28+r − 1

)−1
, r = 1, . . . , 7

}
, ∆hr −→r→∞ 0,

that is,

∆h1 = 1.96
(
10−3

)
, ∆h2 = 9.78

(
10−4

)
,

∆h3 = 4.89
(
10−4

)
, ∆h4 = 2.44

(
10−4

)
,

∆h5 = 1.22
(
10−4

)
, ∆h6 = 6.10

(
10−5

)
,

∆h7 = 3.06
(
10−5

)
.

Due to computational limitations involved in the smallest discretization
step sizes, we restrict our attention here to the sample sizes

{nt = 5000 + 10000 (t− 1) , t = 1, 2, 3} ,

and N = 120 realizations have been generated, for each functional sample
size. The same nodes are considered as in the previous section, in the imple-
mentation of the discrete wavelet transform, without previous smoothing of
the discretely generated data.
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Tabla 2 displays the results obtained on the proportion of values, from

the 120 generated values,
∥∥∥ρ (Xh,r

nt

)
− X̂h,r

nt+1

∥∥∥
B
, h = 1, . . . , 120, that are

larger than the upper bound (3), considering different discretization step
sizes, for each sample size {nt = 5000 + 10000 (t− 1) , t = 1, 2, 3}, and for
the corresponding truncation orders knt = ln(nt), t = 1, 2, 3.

Table 2: Proportions of simulations whose error B-norms are larger than the upper bound
in (3), for sample sizes n = [5000, 15000, 35000]. Truncation parameter kn = ln(n)
has been considered. For each one of the functional sample sizes, the results displayed

correspond to discretization step sizes
{

∆hr =
(
28+r − 1

)−1
, r = 1, . . . , 7

}
. N = 120

simulations are generated, for each sample and discretization step size.

n1 = 5000 n2 = 15000 n3 = 35000

∆h1 = 1.96
(
10−3

)
12
120

7
120

6
120

∆h2 = 9.78
(
10−4

)
8

120
4

120
4

120

∆h3 = 4.89
(
10−4

)
4

120
2

120
2

120

∆h4 = 2.44
(
10−4

)
2

120
1

120
1

120

∆h5 = 1.22
(
10−4

)
2

120
1

120 0

∆h6 = 6.10
(
10−5

)
1

120 0 0

∆h7 = 3.06
(
10−5

)
1

120 0 0
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