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a b s t r a c t

This paper presents new results on the prediction of linear processes in function spaces. The
autoregressive Hilbertian process framework of order one (ARH(1) framework) is adopted.
A component-wise estimator of the autocorrelation operator is derived from the moment-
based estimation of its diagonal coefficients with respect to the orthogonal eigenvectors of
the autocovariance operator, which are assumed to be known. Mean-square convergence
to the theoretical autocorrelation operator is proved in the space of Hilbert–Schmidt
operators. Consistency then follows in that space. Mean absolute convergence, in the
underlying Hilbert space, of the ARH(1) plug-in predictor to the conditional expectation is
obtained as well. A simulation study is undertaken to illustrate the large-sample behavior
of the formulated component-wise estimator and predictor. Additionally, alternative
component-wise (with known and unknown eigenvectors), regularized, wavelet-based
penalized, and nonparametric kernel estimators of the autocorrelation operator are
compared with the one presented here, in terms of prediction.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades, an extensive literature on statistical inference from functional random variables has emerged.
This workwasmotivated in part by the statistical analysis of high-dimensional data, as well as data of a continuous (infinite-
dimensional) nature; see, e.g., [9,10,17,23,41,42,49–51]. New developments in functional data analysis are described,
e.g., in [8,13,31,32], and in a recent Special Issue of this journal [25].

The special case of functional regression models, in which the predictor is a random function and the response is
scalar, has been particularly well studied. Various specifications of the functional regression parameter arise in fields such
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as biology, climatology, chemometrics, and economics. To avoid the computational (high-dimensional) limitations of the
nonparametric approach, several parametric and semi-parametric methods have been proposed; see, e.g., [21] and the
references therein.

In Ferraty et al. [21], a combination of a spline approximation and the one-dimensional Nadaraya–Watson approach
was proposed to avoid high dimensionality issues. Generalizations to the case of more regressors (all functional, or both
functional and real) were also addressed in the nonparametric, semi-parametric, and parametric frameworks; for an
overview, see [1,20,24].

In the nonparametric regression framework, the case where the covariates and the response are functional was
considered by Ferraty et al. [22], where a functional version of the Nadaraya–Watson estimator was proposed for the
estimation of the regression operator and shown to be point-wise asymptotically normal. Resampling techniques were used
to overcome the difficulties arising in the estimation of the asymptotic bias and variance.

Semi-functional partial linear regression, introduced in [2], allows the prediction of a real-valued random variable from
a set of real-valued explanatory variables, and a time-dependent functional explanatory variable. Motivated by genetic and
environmental applications, a semiparametric maximum likelihood method for the estimation of odds ratio association
parameters was developed by Chen et al. [12] in a high-dimensional data context.

In the autoregressive Hilbertian time series framework, several estimation and prediction procedures have been
proposed and studied.Mas [36] established, under suitable conditions, the asymptotic normal distribution of the formulated
estimator of the autocorrelation operator, based on projection into the theoretical eigenvectors. In [9,11], the problem of
prediction of linear processes in function spaces was addressed. In particular, sufficient conditions for the consistency of
the empirical autocovariance and cross-covariance operators were obtained. The asymptotic normal distribution of the
empirical autocovariance operator was also derived. Moreover, the asymptotic properties of the empirical eigenvalues and
eigenvectors were analyzed.

Guillas [28] established the efficiency of a component-wise estimator of the autocorrelation operator, based on projection
into the empirical eigenvector system of the autocovariance operator. Consistency, in the space of bounded linear operators,
of the formulated estimator of the autocorrelation operator, and of its associated ARH(1) plug-in predictor was later proved
by Mas [37]. He later derived sufficient conditions for the weak convergence of the ARH(1) plug-in predictor to a Hilbert-
valued Gaussian randomvariable; see [38]. In parallel, Mas obtained high deflection results or large andmoderate deviations
for infinite-dimensional autoregressive processes [39]. Furthermore, the law of the iterated logarithm for the covariance
operator estimator was formulated by Menneteau [40].

The main properties of the class of autoregressive Hilbertian processes with random coefficients were investigated by
Mourid [44]. Kargin and Onatski [33] gave interesting extensions of the autoregressive Hilbertian framework, based on the
spectral decomposition of the autocorrelation operator, and not of the autocovariance operator. The first generalization
on autoregressive processes of order greater than one was proposed by Mourid [43], in order to improve prediction.
ARHX(1)models, i.e., autoregressive Hilbertian processeswith exogenous variableswere studied byDamon andGuillas [15].
In [27,28] a doubly stochastic formulation of the autoregressive Hilbertian process was investigated. The ARHD model
was introduced by Marion and Pumo [35], taking into account the regularity of trajectories through the derivatives. The
conditional autoregressiveHilbertian process (CARHprocess)was considered by Cugliari [14], developing parallel projection
estimation methods to predict such processes. In the Banach-valued context, we refer to the papers by [6,18,47,48], among
others.

In this paper, we assume that the autocorrelation operator belongs to the Hilbert–Schmidt class, and admits a diagonal
spectral decomposition in terms of the orthogonal eigenvector systemof the autocovariance operator. Such is the case, e.g., of
an autocorrelation operator defined as a continuous function of the autocovariance operator. A component-wise estimator
of the autocorrelation operator is then constructed in terms of the eigenvectors of the autocovariance operator, which are
assumed to be known. This occurswhen the random initial condition is defined as the solution, in themean-square sense, of a
stochastic differential equation driven by white noise. Beyond this case, the sparse representation andwhitening properties
of wavelet bases can be exploited to obtain a diagonal representation of the autocovariance and cross-covariance operators,
in terms of a common and known wavelet basis. Unconditional bases, like wavelet bases, also allow the diagonal spectral
series representation of the distributional kernels of Calderón–Zygmund operators,

Under the assumptions stated in Sections 2 and 3, we establish the convergence in the L2-sense of a component-wise
estimator of the autocorrelation operator in the space of Hilbert–Schmidt operators S (H), i.e., convergence in the space
L2

S(H) (Ω,A,P ). Consistency then follows in S (H). Under the same conditions, consistency in H of the associated ARH(1)
plug-in predictor is obtained, from its convergence in the L1-sense in the Hilbert space H , i.e., in the space L1

H (Ω,A,P ).
The Gaussian framework is analyzed in Section 4 and illustrated in Section 5, where examples show the behavior of

the proposed component-wise autocorrelation operator estimator, and associated predictor, for large sample sizes. We also
present there a comparative study with alternative ARH(1) prediction techniques, including component-wise parameter
estimation of the autocorrelation operator, from known and unknown eigenvectors, as well as kernel (nonparametric)
functional estimation, and penalized, spline and wavelet, estimation. Final comments on the application of the proposed
approach from real data are provided in Section 6.
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2. Preliminaries

This section contains the preliminary definitions and lemmas that will be used to derive themain results of this paper. In
the following, H denotes a real separable Hilbert space. Recall from [9] that a zero-mean ARH(1) process X = {Xn : n ∈ Z}

satisfies, for all n ∈ Z, the equation

Xn = ρ (Xn−1)+ εn, (1)

whereρ denotes the autocorrelation operator of the process X , which belongs to the spaceL(H) of bounded linear operators
such that ∥ρk

∥L(H) < 1 for all integers k ≥ k0 beyond a certain k0, with ∥ · ∥L(H) denoting the norm in the space L(H).
The Hilbert-valued innovation process ε = {εn : n ∈ Z} is assumed to be a strong white noise which is uncorrelated with
the random initial condition. That is, ε is a Hilbert-valued zero-mean stationary process, with independent and identically
distributed components in time, and with σ 2

ε = E(∥εn∥2
H) < ∞, for all n ∈ Z. We restrict our attention here to the case

where ρ is such that ∥ρ∥L(H) < 1.
The following assumptions are made.

Assumption A1. The autocovariance operator C = E(Xn ⊗ Xn) = E(X0 ⊗ X0), for all n ∈ Z, is a positive self-adjoint and
trace operator. As a result, it admits the following diagonal spectral representation

C =

∞
j=1

Cjφj ⊗ φj, (2)

in terms of an orthonormal system {φj : j ≥ 1} of eigenvectors which are known. Here, C1 ≥ C2 ≥ · · · > 0 denote the real
positive eigenvalues of C arranged in decreasing order of magnitude and


∞

j=1 Cj < ∞.

Assumption A2. The autocorrelation operator ρ is a self-adjoint and Hilbert–Schmidt operator, admitting the diagonal
spectral decomposition

ρ =

∞
j=1

ρjφj ⊗ φj,

∞
j=1

ρ2
j < ∞, (3)

where

ρj : j ≥ 1


is the system of eigenvalues of the autocorrelation operator ρ with respect to the orthonormal system of

eigenvectors

φj : j ≥ 1


of the autocovariance operator C .

Note that, under Assumption A2, ∥ρ∥L(H) = supj≥1 ρj < 1.

Remark 1. Assumption A2 holds in particular when the operator ρ is defined as a continuous function of operator C; see
[16, pp. 119–140]. See also Remark 4.

For any n ∈ Z, let D = E(Xn ⊗ Xn+1) = E(X0 ⊗ X1) be the cross-covariance operator of the ARH(1) process X .

Remark 2. Under Assumptions A1–A2, it follows from Eq. (1) that

Rε = C − ρCρ =

∞
j=1


Cj(1 − ρ2

j )

φj ⊗ φj =

∞
j=1

σ 2
j φj ⊗ φj.

By projecting Eq. (1) into the orthonormal system

φj : j ≥ 1


, we also have, for each j ≥ 1 and all n ∈ Z, the AR(1) equation

Xn,j = ρjXn−1,j + εn,j, (4)

where Xn,j =

Xn, φj


H and εn,j =


εn, φj


H for all n ∈ Z. From Eq. (4), we have, for each j ≥ 1 and all n ∈ Z,

ρj = ρ(φj)(φj) =

φj,DC−1(φj)


H =


D(φj), φj


H


C−1(φj), φj


H

=
E(Xn,jXn−1,j)

E(X2
n−1,j)

=
Dj

Cj
, (5)

where Dj =

D(φj), φj


H = E(Xn,jXn−1,j) and C−1

j = {E(X2
n−1,j)}

−1, given that, for all j ≥ 1,

D =

∞
j=1

Djφj ⊗ φj, Dj = ρjCj. (6)
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Let us now consider the Banach space L2H (Ω,A,P ) of the equivalence classes of L
2
H (Ω,A,P ), the space of zero-mean

second-order Hilbert-valued random variables (H-valued random variables) with finite seminorm given by

∀Z ∈ L2
H (Ω,A,P ) , ∥Z∥L2

H (Ω,A,P )
=


E

∥Z∥

2
H


. (7)

That is, for Z, Y ∈ L2
H (Ω,A,P ), Z and Y belong to the same equivalence class if and only if E


∥Z − Y∥

2
H


= 0. The

convergence in the seminorm of L2
S(H) (Ω,A,P )will be considered in Proposition 1, where H = S(H) denotes the Hilbert

space of Hilbert–Schmidt operators on a Hilbert space H .
For each n ∈ Z, let us consider the following biorthogonal representation of the functional value Xn of the ARH(1) process

X , and of the functional value εn of its innovation process ε, viz.

Xn =

∞
j=1


Cj


Xn, φj


H

Cj
φj =

∞
j=1


Cj

Xn,j
Cj
φj =

∞
j=1


Cj ηj(n)φj, (8)

εn =

∞
j=1

σj


εn, φj


H

σj
φj =

∞
j=1

σj
εn,j

σj
φj =

∞
j=1

σjηj(n)φj, (9)

where ηj(n) =

Xn, φj


H /

Cj = Xn,j/


Cj andηj(n) =


εn, φj


H /σj = εn,j/σj, for every n ∈ Z, and for each j ≥ 1. Here, under

Assumptions A1 and A2, for Rε = E(εn ⊗ εn) = E(ε0 ⊗ ε0), n ∈ Z, one has, for all j ≥ 1,

Rεφj = σ 2
j φj,

where, as before,

φj : j ≥ 1


denotes the system of eigenvectors of the autocovariance operator C , and


j≥1 σ

2
j = σ 2

ε =

E(∥εn∥2
H), for all n ∈ Z.

The following lemma provides the convergence, in the seminorm of L2
H(Ω,A,P ), of the series expansions (8) and (9).

Lemma 1. Let X = {Xn : n ∈ Z} be a zero-mean ARH(1) process. Under Assumptions A1–A2, for any n ∈ Z, the following limit
holds

lim
M→∞

E(∥Xn −Xn,M∥
2
H) = 0, (10)

whereXn,M =
M

j=1


Cjηj(n)φj. Furthermore,

lim
M→∞

∥E{(Xn −Xn,M)⊗ (Xn −Xn,M)}∥
2
S(H) = 0. (11)

Similar assertions hold for the biorthogonal series representation

εn =

∞
j=1

σj


εn, φj


H

σj
φj =

∞
j=1

σjηj(n)φj.

Proof. Under Assumption A1, from the trace property of C , the sequenceXn,M satisfies, for M sufficiently large, and L > 0,
arbitrary,

∥Xn,M+L −Xn,M∥
2
L2

H (Ω,A,P)
= E(∥Xn,M+L −Xn,M∥

2
H)

=

M+L
j=M+1

M+L
k=M+1


Cj


Ck E


ηj(n)ηk(n)

 
φj, φk


H

=

M+L
j=M+1

Cj → 0, M → ∞, (12)

since, under Assumption A1,
M

j=1 Cj is a Cauchy sequence, and
M+L

j=M+1 Cj converges to zero when M → ∞, for L > 0,
arbitrary. From Eq. (12),Xn,M is also a Cauchy sequence in L2H(Ω,A, P) and hence it has finite limit in L2H(Ω,A, P).

Furthermore,

lim
M→∞

E

∥Xn −Xn,M∥

2
H


= E


∥Xn∥

2
H


+ lim

M→∞

M
j=1

M
h=1


Cj


Ch E


ηj(n)ηh(n)


⟨φj, φh⟩H

− 2 lim
M→∞

M
j=1


Cj E


⟨Xn, ηj(n)φj⟩H





16 J. Álvarez-Liébana et al. / Journal of Multivariate Analysis 155 (2017) 12–34

= σ 2
X − lim

M→∞

M
j=1

Cj = 0. (13)

In the derivation of the identities in (12) and (13), we used the fact that, for every j, h ≥ 1,

Cφj = Cjφj,

φj, φh


H = δj,h, σ 2

X = E(∥Xn∥
2
H) =

∞
j=1

Cj < ∞

E

ηj(n)ηh(n)


= δj,h, E


Xn, ηj(n)φj


H


=

Cj. (14)

Moreover, from identities in (14), we haveEXn − lim
M→∞

Xn,M


⊗


Xn − lim

M→∞

Xn,M

2
S(H)

=

E(Xn ⊗ Xn)+ lim
M→∞

M
j=1

M
h=1


Cj


Chφj ⊗ φhE


ηj(n)ηh(n)


− 2 lim

M→∞

M
j=1

E

Xn ⊗


Cjηj(n)φj


2

S(H)

=

E(Xn ⊗ Xn)+ lim
M→∞


M
j=1

Cjφj ⊗ φj − 2
M
j=1

Cjφj ⊗ φj


2

S(H)

=

E(Xn ⊗ Xn)− lim
M→∞

M
j=1

Cjφj ⊗ φj


2

S(H)

= 0. (15)

In a similar way, we can derive the convergence of


∞

j=1 σjηj(n)φj to εn, in L2
H(Ω,A,P ), for every n ∈ Z, since ε is

assumed to be strong-white noise, and hence, its covariance operator Rε is in the trace class. We can also obtain an analog
to Eq. (15). �

In Eqs. (8)–(9), for every n ∈ Z and j, h ≥ 1, we have

E

ηj(n)


= 0, E


ηj(n)ηh(n)


= δj,h, (16)

E
ηj(n) = 0, E

ηj(n)ηh(n) = δj,h. (17)

Note that, for each j ≥ 1,

Xn,j : n ∈ Z


in Eq. (4) defines a stationary and invertible AR(1) process. In addition, from

Eqs. (8) and (14), for every n ∈ Z and j, p ≥ 1,

Xn =

∞
j=1

Xn,jφj,

E(Xn,jXn,p) =

∞
k=0

∞
h=0

ρk
j ρ

h
pE(εn−k,jεn−h,p) = δj,p

∞
k=0

ρ2k
j σ

2
j = δj,p

σ 2
j

1 − ρ2
j
,

E

∥Xn∥

2
H


=

∞
j=1

E(X2
n,j) =

∞
j=1


C

φj

, φj

H =

∞
j=1

Cj = σ 2
X < ∞,

(18)

which implies that Cj = σ 2
j /

1 − ρ2

j


, for each j ≥ 1. In particular, we obtain, for each j ≥ 1, and for every n ∈ Z,

E

ηj(n)ηj(n + 1)


= E

 Xn,j
Cj

Xn+1,j
Cj


=

E(Xn,jXn+1,j)

Cj

=

∞
k=0

∞
h=0
ρk+h
j E(εn−k,jεn+1−h,j)

Cj

=

∞
k=0
ρ2k+1
j σ 2

j

Cj
=
σ 2
j

Cj

ρj

1 − ρ2
j

= ρj. (19)



J. Álvarez-Liébana et al. / Journal of Multivariate Analysis 155 (2017) 12–34 17

Remark 3. From Eq. (4) and Lemma 1, keeping in mind that Cj = σ 2
j /

1 − ρ2

j


, for each j ≥ 1, the following invertible and

stationary AR(1) process can be defined:

ηj(n) = ρjηj(n − 1)+


1 − ρ2

jηj(n), 0 < ρ2
j ≤

ρj < 1, (20)

where, for each j ≥ 1,

ηj(n) : n ∈ Z


and

ηj(n) : n ∈ Z

are respectively introduced in Eqs. (8) and (9). In the following,

for each j ≥ 1, we assume that E
ηj(n)4 < ∞, for every n ∈ Z, to ensure ergodicity for all second-order moments, in the

mean-square sense; see, e.g., [30, pp. 192–193].

Furthermore,

D = E(Xn ⊗ Xn+1) =

∞
j=1

∞
p=1

E

Xn, φj


H


Xn+1, φp


H


φj ⊗ φp

=

∞
j=1

∞
p=1


CjCp

E

Xn, φj


H


Xn+1, φp


H


CjCp

φj ⊗ φp

=

∞
j=1

∞
p=1


CjCp E


ηj(n)ηp(n + 1)


φj ⊗ φp. (21)

Remark 4. In particular, Assumption A2 holds if the following orthogonality condition is satisfied for all n ∈ Z and j, p ≥ 1,

E

ηj(n)ηp(n + 1)


= δj,p, (22)

where δj,p denotes the Kronecker delta function. In practice, unconditional bases, e.g., wavelet bases, lead to a sparse
representation for functional data; see, e.g., [45,46,54], for statistically oriented treatments. Wavelet bases are also designed
for sparse representation of kernels defining integral operators, in L2 spaces with respect to a suitable measure; see [34].
The DiscreteWavelet Transform (DWT) approximately decorrelates or whitens data; see [54]. In particular, operators C and
D could admit an almost diagonal representation with respect to the self-tensorial product of a suitable wavelet basis.

3. Estimation and prediction results

A component-wise estimator of the autocorrelation operator and the associated ARH(1) plug-in predictor are formulated
in this section. Their convergence to the corresponding theoretical functional values are derived in the spacesL2

S(H)(Ω,A, P)
and LH(Ω,A, P), respectively. Their consistency in the spaces S(H) and H then follows.

FromEq. (5), for each j ≥ 1, and for a given sample size n, one can consider the usual respectivemoment-based estimatorsDn,j andCn,j of Dj and Cj, in the AR(1) framework, given by

Dn,j =
1

n − 1

n−2
i=0

Xi,jXi+1,j, (23)

Cn,j =
1
n

n−1
i=0

X2
i,j. (24)

The following truncated component-wise estimator of ρ is then formulated,

ρkn =

kn
j=1

ρn,jφj ⊗ φj, (25)

where, for each j ≥ 1,

ρn,j =

Dn,jCn,j
=

n−2
i=0

Xi,jXi+1,j/(n − 1)

n−1
i=0

X2
i,j/n

=
n

n − 1

n−2
i=0

Xi,jXi+1,j

n−1
i=0

X2
i,j

. (26)

Here, the truncation parameter kn indicates that we have considered the first kn eigenvectors associated with the first kn
eigenvalues, arranged in decreasing order of their modulus magnitude. Furthermore, kn is such that

lim
n→∞

kn = ∞, kn/n < 1, n ≥ 2. (27)

The following additional condition will be assumed on kn for the derivation of the subsequent results:
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Assumption A3. The truncation parameter kn in (25) is such that limn→∞ Ckn
√
n = ∞.

Remark 5. Assumption A3 has also been considered in [9, p. 217] to ensure weak consistency of the proposed estimator of
ρ, as well as in [36] (see Proposition 4, p. 902) in the derivation of asymptotic normality.

From Remark 3, for each j ≥ 1, ηj =

ηj(n); n ∈ Z


in Eq. (20) defines a stationary and invertible AR(1) process, ergodic

in the mean-square sense; see, e.g., [5]. Therefore, in view of Eqs. (16) and (19), for each j ≥ 1, there exist two positive
constants Kj,1 and Kj,2 such that the following identities hold:

lim
n→∞

n E

1 −

n−1
i=0

η2j (i)/n

2
 = Kj,1, (28)

lim
n→∞

n E

ρj − n−2
i=0

ηj(i)ηj(i + 1)/(n − 1)

2
 = Kj,2. (29)

Eqs. (28) and (29) imply, for n sufficiently large,

var


1
n

n−1
i=0

η2j (i)


≤

Kj,1

n
, (30)

var


1

n − 1

n−2
i=0

ηj(i)ηj(i + 1)


≤

Kj,2

n
, (31)

for certain positive constantsKj,1 andKj,2, for each j ≥ 1. Equivalently, for n sufficiently large,

E

1 −
1
n

n−1
i=0

η2j (i)

2
 ≤

Kj,1

n
, (32)

E

ρj − 1
n − 1

n−2
i=0

ηj(i)ηj(i + 1)

2
 ≤

Kj,2

n
. (33)

The following assumption is now considered.

Assumption A4. S = supj≥1(Kj,1 +Kj,2) < ∞.

Remark 6. From Eq. (26), applying the Cauchy–Schwarz inequality, we obtain, for each j ≥ 1,

ρn,j ≤
n

n − 1

n−2
i=0

X2
i+1,j

n−1
i=0

X2
i,j ≤

n
n − 1

a.s. (34)

3.1. Convergence in L2
S(H)(Ω,A,P )

Next, the convergence ofρkn to ρ in the space L2
S(H) (Ω,A,P ) is derived under the setting of conditions formulated in

the previous sections.

Proposition 1. Let X = {Xn : n ∈ Z} be a zero-mean standard ARH(1) process. Under Assumptions A1–A4, the following limit
holds:

lim
n→∞

ρ −ρkn2L2
S(H)(Ω,A,P )

= 0. (35)

Specifically,

ρ −ρkn2L2
S(H)(Ω,A,P )

≤ g(n), with g(n) = O


1

C2
knn


, n → ∞. (36)
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Remark 7. Corollary 4.3 in p. 107 of [9] can be applied to obtain weak convergence results, in terms of weak expectation,
using the empirical eigenvectors. See the definition of weak expectation at the beginning of Section 1.3 in p. 27 of [9].

Proof. For each j ≥ 1, the following almost surely inequality is satisfied:

ρj −ρn,j =

Dj

Cj
−

Dn,jCn,j

 =

Dj −Dn,j

Cj
+

Cn,j − Cj

Cj

Dn,jCn,j


≤

1
Cj
(|ρn,j | |Cj −Cn,j| + |Dj −Dn,j|). (37)

Thus, under Assumptions A1–A2, from Eq. (34), for each j ≥ 1,
ρj −ρn,j2 ≤

1
C2
j

ρn,j |Cj −Cn,j| + |Dj −Dn,j|
2

≤
2
C2
j

ρn,j2 (Cj −Cn,j)
2
+ (Dj −Dn,j)

2


≤
2
C2
j


n

n − 1

2

(Cj −Cn,j)
2
+ (Dj −Dn,j)

2


a.s., (38)

which implies

E

ρj −ρn,j2 ≤

2
C2
j


n

n − 1

2

E{(Cj −Cn,j)
2
} + E{(Dj −Dn,j)

2
}


. (39)

Under Assumption A2, from Eqs. (25) and (39),

∥ρ −ρkn∥2
L2

S(H)(Ω,A,P )
= E

ρ −ρkn2S(H)
=

kn
j=1

E

ρj −ρn,j2+

∞
j=kn+1

E(ρ2
j )

≤

kn
j=1

2
C2
j


n

n − 1

2

E{(Cj −Cn,j)
2
} + E{(Dj −Dn,j)

2
}


+

∞
j=kn+1

ρ2
j

≤
2
C2
kn

kn
j=1


n

n − 1

2 
E{(Cj −Cn,j)

2
} + E{(Dj −Dn,j)

2
}

+

∞
j=kn+1

ρ2
j

≤
2
 n
n−1

2
C2
kn

kn
j=1


E{(Cj −Cn,j)

2
} + E{(Dj −Dn,j)

2
}

+

∞
j=kn+1

ρ2
j . (40)

Furthermore, from Eqs. (8) and (26), for j ≥ 1,

Cn,j =
1
n

n−1
i=0

X2
i,j =

1
n

n−1
i=0

Cjη
2
j (i), (41)

Dn,j =
1

n − 1

n−2
i=0

Xi,jXi+1,j =
1

n − 1

n−2
i=0

Cjηj(i)ηj(i + 1), (42)

where, considering Eq. (6),

Dj = E

Xn,jXn+1,j


= CjE


ηj(n)ηj(n + 1)


= Cjρj (43)

for all j ≥ 1 and n ∈ Z. Eqs. (40)–(43) then lead to

∥ρ −ρkn∥2
L2

S(H)(Ω,A,P )
≤

2
 n
n−1

2
C2
kn

kn
j=1

C2
j

E

1 −
1
n

n−1
i=0

η2j (i)

2
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+ E

ρj − 1
n − 1

n−2
i=0

ηj(i + 1)ηj(i)

2
+

∞
j=kn+1

ρ2
j . (44)

For each j ≥ 1, and for n sufficiently large, considering Eqs. (32)–(33), under Assumption A4,

E
ρ −ρkn2S(H) ≤

2
 n
n−1

2
C2
kn

kn
j=1

C2
j

Kj,1 +Kj,2

n


+

∞
j=kn+1

ρ2
j

≤
2S
 n
n−1

2
C2
knn

kn
j=1

C2
j +

∞
j=kn+1

ρ2
j . (45)

From the trace property of operator C ,

lim
n→∞

kn
j=1

C2
j =

∞
j=1

C2
j < ∞,

and from the Hilbert–Schmidt property of ρ,

lim
n→∞

∞
j=kn+1

ρ2
j = 0.

Thus, in view of Eq. (45), one has, as n → ∞,

ρ −ρkn2L2
S(H)(Ω,A,P )

= E
ρ −ρkn2S(H) ≤ g(n) = O


1

C2
knn


(46)

with

g(n) =
2S
 n
n−1

2
C2
knn

kn
j=1

C2
j +

∞
j=kn+1

ρ2
j . (47)

Under Assumption A3, Eq. (46) implies

lim
n→∞

∥ρ −ρkn∥2
L2

S(H)(Ω,A,P )
= 0,

as we wanted to prove. �

Note that consistency ofρkn in the space S (H) directly follows from Eq. (35) in Proposition 1.

Corollary 1. Let X = {Xn : n ∈ Z} be a zero-mean standard ARH(1) process. Under Assumptions A1–A4, as n → ∞,ρ −ρknS(H) →
p 0, (48)

where →
p denotes convergence in probability.

3.2. Consistency of the ARH(1) plug-in predictor

Let us consider L (H), the space of bounded linear operators on H , with the norm

∥A∥L(H) = sup
X∈H

∥A (X)∥H

∥X∥H
, (49)

for every A ∈ L (H). In particular, for each X ∈ H ,

∥A (X)∥H ≤ ∥A∥L(H) ∥X∥H . (50)

In the following, we denote byXn =ρkn (Xn−1) (51)

the ARH(1) plug-in predictor of Xn, as an estimator of the conditional expectation E(Xn|Xn−1) = ρ (Xn−1). The following
proposition provides the convergence in L1

H(Ω,A, P) ofρkn (Xn−1) to ρ (Xn−1), and hence, the weak consistency ofXn =ρkn (Xn−1) in H , for the approximation of ρ (Xn−1).
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Proposition 2. Let X = {Xn : n ∈ Z} be a zero-mean standard ARH(1) process. Under Assumptions A1–A4,

lim
n→∞

E
ρ (Xn−1)−ρkn (Xn−1)


H


= 0. (52)

Specifically,

E
ρ (Xn−1)−ρkn (Xn−1)


H


≤ h (n) , h (n) = O


1

Ckn
√
n


, n → ∞. (53)

In particular,ρ (Xn−1)−ρkn (Xn−1)

H →

p 0. (54)

Proof. From (50) and Proposition 1, for n sufficiently large, the following almost surely inequality holds:ρ (Xn−1)−ρkn (Xn−1)

H ≤

ρ −ρknL(H) ∥Xn−1∥H . (55)

Thus,

E
ρ (Xn−1)−ρkn (Xn−1)


H


≤ E

ρ −ρknL(H) ∥Xn−1∥H


. (56)

From the Cauchy–Schwarz inequality, keeping in mind that, for a Hilbert–Schmidt operator K , one always has
∥K∥L(H) ≤ ∥K∥S(H), we have from Eq. (56),

E
ρ (Xn−1)−ρkn (Xn−1)


H


≤


E
ρ −ρkn2L(H)E


∥Xn−1∥

2
H


≤


E
ρ −ρkn2S(H)E


∥Xn−1∥

2
H


=


E
ρ −ρkn2S(H)σX , (57)

where, as before,

σ 2
X = E


∥Xn−1∥

2
H


=

∞
j=1

Cj < ∞,

for each n ∈ Z; see Eq. (14). From Proposition 1 (see Eq. (36)),ρ −ρkn2L2
S(H)(Ω,A,P )

≤ g(n), with g(n) = O


1

C2
knn


, n → ∞,

then, the following upper bound is obtained in Eq. (57)

E
ρ (Xn−1)−ρkn (Xn−1)


H


≤ h (n) , (58)

where h (n) = σX
√
g (n), with g (n) being given in (47). In particular, under Assumption A3,

lim
n→∞

E
ρ (Xn−1)−ρkn (Xn−1)


H


= 0, (59)

which implies thatρ (Xn−1)−ρkn (Xn−1)

H →

p 0, n → ∞. � (60)

4. The Gaussian case

In this section, we prove that, in the Gaussian ARH(1) context, Assumptions A1 and A2 imply that Assumption A4 also
holds.

From Eq. (16), for n ≥ 1,

E


1
n

n−1
i=0

η2j (i)


= 1.
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Furthermore, for each j ≥ 1, and n ≥ 2, the n×1 random vector η⊤

j =

ηj(0), . . . , ηj(n − 1)


follows aMultivariate Normal

distribution with null mean vector, and covariance matrix

Σn×n =


1 ρj 0 · · · · · · 0
ρj 1 ρj 0 · · · 0
0 ρj 1 ρj · · · 0
...

...
...

...
...

...
0 · · · 0 0 ρj 1


n×n

. (61)

It is well-known (see, e.g., [29]) that the variance of a quadratic form defined from a multivariate Gaussian vector y ∼

N (µ,Λ), and a symmetric matrix Q is given by

var

y⊤Qy


= 2trace (QΛQΛ)+ 4µ⊤QΛQµ. (62)

For each j ≥ 1, applying Eq. (62), with y = ηj, Λ = Σn×n, in Eq. (61), and Q = In×n, the n × n identity matrix, keeping in
mind E


ηj(i)ηj(i + 1)


= ρj, for every i ∈ Z,

var

η⊤

j In×nηj


= var


n−1
i=0

η2j (i)


= 2 trace (Σn×nΣn×n) = 2{n + 2(n − 1)ρ2

j }. (63)
Furthermore, from Eq. (63), for each j ≥ 1,

var


1
n

n−1
i=0

η2j (i)


=

2
n2


n + 2(n − 1)ρ2

j


=

2
n

+ 4

1
n

−
1
n2


ρ2
j . (64)

We then obtain from Eq. (64),

lim
n→∞

var


1
n

n−1
i=0

η2j (i)


= lim

n→∞
E

1 −
1
n

n−1
i=0

η2j (i)

2


= lim
n→∞

2
n

+ 4

1
n

−
1
n2


ρ2
j = 0. (65)

Eq. (65) leads to

lim
n→∞

n var


n−1
i=0
η2j (i)

n

 = 2 + 4ρ2
j . (66)

Hence, for each j ≥ 1, Kj,1, in Eq. (28) is given by Kj,1 = 2 + 4ρ2
j , and, from Eq. (64),

var


1
n

n−1
i=0

η2j (i)


≤ 2 + 4


1
n

−
1
n2


ρ2
j ≤ 2 + 4ρ2

j ≤ 6. (67)

Thus, for every j ≥ 1, Kj,1 in Eq. (30) satisfiesKj,1 ≤ 6.

Remark 8. Note that, from Lemma 1, for each j ≥ 1 and all i ∈ Z,

E
η4j (i) = 3. (68)

Thus, the assumption considered in Remark 3 holds, and for each j ≥ 1, the AR(1) process ηj =

ηj(i) : i ∈ Z


is ergodic for

all second-order moments, in the mean-square sense; see pp. 192–193 of [30].

For n ≥ 2, and for each j ≥ 1, we are now going to compute Kj,2 in (29). The (n − 1) × 1 random vectors η⋆j =
ηj(0), . . . , ηj(n − 2)

⊤ and η⋆⋆j =

ηj(1), . . . , ηj(n − 1)

⊤ are Multivariate Normal distributed, with null mean vector,
and covariance matrix

Σ(n−1)×(n−1) =


1 ρj 0 · · · · · · 0
ρj 1 ρj 0 · · · 0
0 ρj 1 ρj · · · 0
...

...
...

...
...

...
0 · · · 0 0 ρj 1


(n−1)×(n−1)

. (69)
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From Eq. (19), for each j ≥ 1,

E


n−2
i=0

ηj(i)ηj(i + 1)


=

n−2
i=0

ρj = (n − 1)ρj = trace

E

η⋆j

η⋆⋆j
⊤

, (70)

where

E

η⋆j

η⋆⋆j
⊤

= E

η⋆j ⊗ η⋆⋆j


= ρjI(n−1)×(n−1), (71)

with, as before, I(n−1)×(n−1) denoting the (n − 1)× (n − 1) identity matrix.
However, the variance of

n−2
i=0 ηj(i)ηj(i + 1) depends greatly on the distribution of η⋆j and η⋆⋆j . In the Gaussian case,

keeping in mind that η⋆j =

ηj(0), . . . , ηj(n − 2)

⊤ and η⋆⋆j =

ηj(1), . . . , ηj(n − 1)

⊤ are zero-mean multivariate Normal
distributed vectors with covariance matrix Σ(n−1)×(n−1) given in Eq. (69), and having cross-covariance matrix (71), we can
compute the variance of

n−2
i=0 ηj(i)ηj(i + 1), from (70) and (71), as follows. First,

var


η⋆j
⊤ I(n−1)×(n−1)η

⋆⋆
j


= E


η⋆j
⊤ I(n−1)×(n−1)η

⋆⋆
j


η⋆j
⊤ I(n−1)×(n−1)η

⋆⋆
j


−


E


η⋆j
⊤ I(n−1)×(n−1)η

⋆⋆
j

2
.

This can be rewritten as
n−2
i=0

n−2
p=0

E

ηj(i)ηj(i + 1)ηj(p)ηj(p + 1)


−


E


η⋆j
⊤ I(n−1)×(n−1)η

⋆⋆
j

2
which is equal to

n−2
i=0

E

ηj(i)ηj(i + 1)

 n−2
p=0

E

ηj(p)ηj(p + 1)


+

n−2
i=0

n−2
p=0

E

ηj(i)ηj(p)


E

ηj(i + 1)ηj(p + 1)


+

n−2
i=0

n−2
p=0

E

ηj(i)ηj(p + 1)


E

ηj(i + 1)ηj(p)


−


E


η⋆j
⊤ I(n−1)×(n−1)η

⋆⋆
j

2
.

This then reduces to
trace{E(η⋆j ⊗ η⋆⋆j )}

2
+ trace(Σ(n−1)×(n−1)Σ(n−1)×(n−1))

+ trace

E(η⋆j ⊗ η⋆⋆j )


E(η⋆j ⊗ η⋆⋆j )

⊤


−

trace


E(η⋆j ⊗ η⋆⋆j )

2
,

which is the same as

trace(Σ(n−1)×(n−1)Σ(n−1)×(n−1))+ trace[E(η⋆j ⊗ η⋆⋆j ){E(η
⋆
j ⊗ η⋆⋆j )}

⊤
] = (n − 1)+ 2(n − 2)ρ2

j + (n − 1)ρ2
j , (72)

where, from Eq. (71),

E(η⋆j ⊗ η⋆⋆j ){E(η
⋆
j ⊗ η⋆⋆j )}

⊤
=


ρ2
j 0 · · · · · · 0
0 ρ2

j 0 · · · 0
...

. . .
. . .

...
...

0 · · ·
. . .

. . . ρ2
j

 = ρ2
j I(n−1)×(n−1).

From Eq. (72),

var


1

n − 1

n−2
i=0

ηj(i)ηj(i + 1)


=
(n − 1)+ 2(n − 2)ρ2

j + (n − 1)ρ2
j

(n − 1)2
. (73)

Therefore, for each j ≥ 1,

lim
n→∞

n var


1

n − 1

n−2
i=0

ηj(i)ηj(i + 1)


= 1 + 3ρ2

j . (74)

Thus, for each j ≥ 1, Kj,2 in (29) is given by Kj,2 = 1 + 3ρ2
j . From Eq. (73),

var


1

n − 1

n−2
i=0

ηj(i)ηj(i + 1)


≤ 1 + 3ρ2

j ≤ 4. (75)

Thus, for every j ≥ 1, Kj,2 in Eq. (31) satisfiesKj,2 ≤ 4. Therefore, the constant S in AssumptionA4 is such that S ≤ 6+4 = 10.
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5. Simulation study

A simulation study is undertaken to illustrate the behavior of the formulated component-wise estimator of the
autocorrelation operator, and of its associated ARH(1) plug-in predictor for large sample sizes. The results are reported
in Section 5.1. In Section 5.2, a comparative study is developed, from the implementation of the ARH(1) plug-in prediction
techniques proposed in [4,7,9,28]. In the subsequent sections, we restrict our attention to the Gaussian case.

5.1. Behavior ofρ andXn for large sample sizes

Let (−∆)(a,b) be the Dirichlet negative Laplacian operator on (a, b), i.e.,

(−∆)(a,b) (f ) (x) = −
d2

dx2
f (x) , x ∈ (a, b) ⊂ R,

f (a) = f (b) = 0. (76)

The eigenvectors

φj : j ≥ 1


and eigenvalues


λj

(−∆)(a,b)


: j ≥ 1


of (−∆)(a,b) satisfy, for each j ≥ 1, and for x ∈ (a, b),

(−∆)(a,b)φj (x) = λj

(−∆)(a,b)


φj (x) , φj (a) = φj (b) = 0. (77)

For each j ≥ 1 and x ∈ [a, b], the solution to (77) is given by (see [26, p. 6]):

φj (x) =
2

b − a
sin

π jx
b − a


, λj


(−∆)(a,b)


=

π2j2

(b − a)2
. (78)

We consider here the operator C defined by

C =

(−∆)(a,b)

−2(1−γ1) , γ1 ∈ (0, 1/2). (79)

From [16, pp. 119–140], the eigenvectors of C coincidewith the eigenvectors of (−∆)(a,b), and its eigenvalues

Cj : j ≥ 1


are given by

Cj =

λj

(−∆)(a,b)

−2(1−γ1)
=


π2j2

(b − a)2

−2(1−γ1)

, γ1 ∈ (0, 1/2). (80)

Additionally, considering

ρ =


(−∆)(a,b)

λ1

(−∆)(a,b)


− ϵ

−(1−γ2)

, γ2 ∈ (0, 1/2), (81)

for certain positive constant ϵ < λ1

(−∆)(a,b)


close to zero, ρ is a positive self-adjoint Hilbert–Schmidt operator, whose

eigenvectors coincide with the eigenvectors of (−∆)(a,b), and whose eigenvalues

ρj : j ≥ 1


are such that ρj < 1, for every

j ≥ 1, and

ρ2
j =


λj

(−∆)(a,b)


λ1

(−∆)(a,b)


− ϵ

−2(1−γ2)

, ρ2
j ∈ (0, 1) , γ2 ∈ (0, 1/2) , (82)

where, as before,

λj

(−∆)(a,b)


: j ≥ 1


are given in Eq. (78).

From (18), the eigenvalues

σj : j ≥ 1


of Rε are defined, for each j ≥ 1, as

σ 2
j = Cj


1 − ρ2

j


=

λj

(−∆)(a,b)

−2(1−γ1)
−


λj

(−∆)(a,b)

−2(2−γ1−γ2)
λ1

(−∆)(a,b)


− ϵ

−2(1−γ2)
. (83)

Note that Rε is in the trace class, since the trace property of C , and the fact that ρ2
j < 1, for every j ≥ 1, implies

∞
j=1

σ 2
j =

∞
j=1

Cj

1 − ρ2

j


<

∞
j=1

Cj < ∞.

For this particular example of operator C , we have considered a truncation parameter kn of the form

kn = n1/α, (84)
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Table 1
EMSEρkn (here, MSEρkn,1 ), and UB(EMAEXkn

n
) (here, UBX

nkn,1
) values, in Eqs. (87)–(89), for γ1 = 4/10 and γ2 = 9/20, considering the sample sizes

nt = 15 000 + 20 000(t − 1), t = 1, . . . , 20, and the corresponding kn,1 and kn,2 values, for α1 = 5 and α2 = 6.

n kn,1 MSEρkn,1 UBX
nkn,1

kn,2 MSEρkn,2 UBX
nkn,2

n1 = 15 000 6 3.74 (10)−4 2.87 (10)−2 5 2.45 (10)−4 2.25 (10)−2

n2 = 35 000 8 2.15 (10)−4 2.21 (10)−2 5 1.35 (10)−4 1.71 (10)−2

n3 = 55 000 8 1.34 (10)−4 1.75 (10)−2 6 1.03 (10)−4 1.51 (10)−2

n4 = 75 000 9 1.09 (10)−4 1.57 (10)−2 6 7.55 (10)−5 1.29 (10)−2

n5 = 95 000 9 9.48 (10)−5 1.47 (10)−2 6 5.86 (10)−5 1.14 (10)−2

n6 = 115 000 10 8.31 (10)−5 1.39 (10)−2 6 5.16 (10)−5 1.07 (10)−2

n7 = 135 000 10 6.81 (10)−5 1.25 (10)−2 7 4.86 (10)−5 1.04 (10)−2

n8 = 155 000 10 6.37 (10)−5 1.21 (10)−2 7 3.88 (10)−5 9.66 (10)−3

n9 = 175 000 11 6.14 (10)−5 1.19 (10)−2 7 3.87 (10)−5 9.65 (10)−3

n10 = 195 000 11 5.34 (10)−5 1.11 (10)−2 7 3.42 (10)−5 8.79 (10)−3

n11 = 215 000 11 4.67 (10)−5 1.03 (10)−2 7 3.40 (10)−5 8.74 (10)−3

n12 = 235 000 11 4.66 (10)−5 1.03 (10)−2 7 2.92 (10)−5 8.12 (10)−3

n13 = 255 000 12 4.53 (10)−5 1.02 (10)−2 7 2.77 (10)−5 7.95 (10)−3

n14 = 275 000 12 4.24 (10)−5 9.95 (10)−3 8 2.77 (10)−5 7.94 (10)−3

n15 = 295 000 12 3.72 (10)−5 9.32 (10)−3 8 2.67 (10)−5 7.76 (10)−3

n16 = 315 000 12 3.62 (10)−5 9.21 (10)−3 8 2.55 (10)−5 7.64 (10)−3

n17 = 335 000 12 3.39 (10)−5 8.91 (10)−3 8 2.28 (10)−5 7.04 (10)−3

n18 = 355 000 12 3.34 (10)−5 8.86 (10)−3 8 2.20 (10)−5 7.04 (10)−3

n18 = 375 000 13 3.34 (10)−5 8.86 (10)−3 8 2.04 (10)−5 6.84 (10)−3

n20 = 395 000 13 3.12 (10)−5 8.56 (10)−3 8 1.92 (10)−5 6.65 (10)−3

for a suitable α > 0, which, in particular, allows verification of (27). From Eq. (80), one has, for γ1 ∈ (0, 1/2),

√
n Ckn =

√
n

λkn


−∆(a,b)

−2(1−γ1)
=

√
n

πkn
b − a

−4(1−γ1)

. (85)

From Eq. (84), Assumption A3 is then satisfied if

1/2 −
4(1 − γ1)

α
> 0, i.e., if α > 8(1 − γ1) > 4, (86)

since γ1 ∈ (0, 1/2). Fix γ1 = 4/10 and γ2 = 9/20. Then, from Eq. (86), α > 48/10. In particular, the values α1 = 5 and
α2 = 6 have been tested, in Table 1, for H = L2((a, b)), and (a, b) = (0, 4), where L2((a, b)) denotes the space of square
integrable functions on (a, b).

The computed empirical truncated functional mean square error EMSEρkn of the estimatorρkn of ρ, for a sample size n,
is given by

EMSEρkn =
1
N

N
w=1

kn
j=1


ρj −ρwn,j2 , (87)

ρwn,j =

Dwn,jCwn,j =

1
n−1

n−2
i=0

Xwi,jX
w
i+1,j

1
n

n−1
i=0


Xwi,j
2 , (88)

where N denotes the number of simulations, and for each j = 1, . . . , kn, ρwn,j represents the estimator of ρj, based on the
wth generation of the values Xw0,j, . . . , X

w
n−1,j, with Xwi,j =


Xwi , φj


H , forw = 1, . . . , 700, and i = 0, . . . , n − 1.

For the plug-in predictorXn = ρkn (Xn−1), we compute the empirical version UB(EMAEXkn
n
) of the derived upper bound

(57), which, for each n ∈ Z, is given by

UB(EMAEXkn
n
) =

 1
N

N
w=1

kn
j=1


ρj −ρwn,j2 

E
Xwn−1

2
H


. (89)

From N = 700 realizations, for each one of the elements of the sequence of sample sizes nt = 15 000 + 20 000(t − 1),
t = 1, . . . , 20, the EMSEρkn and UB(EMAEXkn

n
) values, for α = 5 and α = 6, are displayed in Table 1, where the abbreviated

notations MSEρkn,1 , for EMSEρkn , and UBX
nkn,1

, for UB(EMAEXkn
n
), are used; see also Figs. 1 and 2.

In this paper, a one-parameter model of kn is selected depending on parameter α. In Example 2, in p. 286 in [28], in
the same spirit, for an equivalent spectral class of operators C , a three-parameter model is established for kn to ensure
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Fig. 1. EMSEρkn values (blue line), in (87)–(88), for γ1 = 4/10 and γ2 = 9/20, considering the sample sizes T = nt = 15 000+20 000(t−1), t = 1, . . . , 20,
and the corresponding kn,1 and kn,2 values, for α1 = 5 (left-hand side) and α2 = 6 (right-hand side), against (1/T )3/4 = (1/nt )

3/4 (black dot line) and
1/T = (1/nt ) (red dot line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. UB(EMAEXkn
n
) values (blue line), in (89), for γ1 = 4/10 and γ2 = 9/20, considering the sample sizes T = nt = 15 000 + 20 000(t − 1),

t = 1, . . . , 20, and the corresponding kn,1 and kn,2 values, for α1 = 5 (left-hand side) and α2 = 6 (right-hand side), against (1/T )1/2 = (1/nt )
1/2 (red dot

line) and (1/T )1/3 = (1/nt )
1/3 (black dot line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

convergence in quadratic mean in the space L(H) of the component-wise estimator of ρ constructed from the known
eigenvectors of C .

The numerical results displayed in Table 1 and Figs. 1–2 illustrate the fact that the proposed component-wise estimatorρkn presents a speed of convergence to ρ, in quadratic mean in S(H), faster than n−1/3, which corresponds to the optimal
case for the component-wise estimator of ρ proposed in [28], in the case of known eigenvectors of C; see, in particular,
Theorem 1, Remark 2 and Example 2 in [28].

For larger values of the parameters γ1 than 0.4, and α than 6, a faster speed of convergence ofρkn to ρ, in quadratic mean
in the space S(H), will be obtained. However, larger sample sizes are required for larger values of α, in order to estimate
a given number of coefficients of ρ. A more detailed discussion about the comparison of the rates of convergence of the
ARH(1) plug-in predictors proposed in [4,7,9,28] can be found in the next section.

5.2. A comparative study

In this section, the performance of our approach is comparedwith those given in [4,7,9,28], including the case of unknown
eigenvectors of C . In the last case, our approach and the approaches presented in [9,28] are implemented in terms of the
empirical eigenvectors.

5.2.1. Theoretical-eigenvector-based component-wise estimators
Let us first compare the performance of our ARH(1) plug-in predictor, defined in (51), and the ones formulated in [9,28],

in terms of the theoretical eigenvectors

φj : j ≥ 1


of C . Note that, in this first part of our comparative study, we consider

the previous generated Gaussian ARH(1) process, with autocovariance and autocorrelation operators defined from Eqs. (80)
and (82), for different rates of convergence to zero of parameters Cj and ρ2

j , j ≥ 1, with both sequences being summable
sequences. Since we restrict our attention to the Gaussian case, Conditions A1, B1 and C1, formulated in pp. 211–212 in [9],
are satisfied by the generated ARH(1) process. Similarly, Conditions H1–H3 in p. 283 of [28] are satisfied as well.
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Table 2
Truncated empirical values of E


∥ρ(Xn−1)−ρkn (Xn−1)∥H


, for ρkn given in Eqs. (25)–(26) (third column), in Eqs. (90)–(91) (fourth column), and in

Eqs. (92)–(93) (fifth column), for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes nt = 15 000+ 20 000(t − 1), t = 1, . . . , 20, and the corresponding
kn = n1/α values, for α = 6.

n kn Our Approach Bosq [9] Guillas [28]

n1 = 15 000 5 2.25 (10)−2 2.57 (10)−2 2.36 (10)−2

n2 = 35 000 5 1.71 (10)−2 1.72 (10)−2 1.84 (10)−2

n3 = 55 000 6 1.51 (10)−2 1.65 (10)−2 1.53 (10)−2

n4 = 75 000 6 1.29 (10)−2 1.46 (10)−2 1.37 (10)−2

n5 = 95 000 6 1.14 (10)−2 1.20 (10)−2 1.16 (10)−2

n6 = 115 000 6 1.07 (10)−2 1.10 (10)−2 1.11 (10)−2

n7 = 135 000 7 1.04 (10)−2 1.06 (10)−2 1.07 (10)−2

n8 = 155 000 7 9.66 (10)−3 9.91 (10)−3 1.01 (10)−2

n9 = 175 000 7 9.65 (10)−3 9.79 (10)−3 9.68 (10)−3

n10 = 195 000 7 8.79 (10)−3 9.12 (10)−3 8.93 (10)−3

n11 = 215 000 7 8.74 (10)−3 8.79 (10)−3 8.83 (10)−3

n12 = 235 000 7 8.12 (10)−3 8.69 (10)−3 8.75 (10)−3

n13 = 255 000 7 7.95 (10)−3 8.53 (10)−3 8.73 (10)−3

n14 = 275 000 8 7.94 (10)−3 8.52 (10)−3 8.58 (10)−3

n15 = 295 000 8 7.76 (10)−3 8.49 (10)−3 8.36 (10)−3

n16 = 315 000 8 7.64 (10)−3 7.88 (10)−3 8.13 (10)−3

n17 = 335 000 8 7.04 (10)−3 7.24 (10)−3 7.59 (10)−3

n18 = 355 000 8 7.04 (10)−3 7.23 (10)−3 6.92 (10)−3

n19 = 375 000 8 6.84 (10)−3 6.89 (10)−3 6.90 (10)−3

n20 = 395 000 8 6.65 (10)−3 6.67 (10)−3 6.85 (10)−3

In Section 8.2 of [9] the following estimator of ρ is proposed

ρn(x) =

Π knDnC−1

n Π kn

(x) =

kn
ℓ=1

ρn,ℓ(x)φℓ, x ∈ H, (90)

ρn,ℓ(x) =
1

n − 1

n−2
i=0

kn
j=1

1Cn,j
⟨φj, x⟩HXi,jXi+1,ℓ, (91)

in the finite-dimensional subspace Hkn = span

φ1, . . . , φkn


of H , whereΠ kn is the orthogonal projector over Hkn , and, as

before, Xi,j =

Xi, φj


H , withCn,j being defined in (24), for each j ≥ 1.

A modified estimator of ρ is studied in [28], given by

ρn,a(x) =

Π knDnC−1

n,aΠ
kn

(x) =

kn
ℓ=1

ρn,a,ℓ(x)φℓ, x ∈ H, (92)

ρn,a,ℓ(x) =
1

n − 1

n−1
i=1

kn
j=1

1

max(Cn,j, an)
⟨φj, x⟩HXi,jXi+1,l, (93)

whereC−1
n,a (x) =

kn
j=1 1/max(Cn,j, an)⟨φj, x⟩Hφj (a.s.). Here, the sequence {an : n ∈ N} is such that (see Theorem 1 in [28])

α
Cγkn
nε

≤ an ≤ βλkn , α > 0, 0 < β < 1, ε < 1/2, γ ≥ 1. (94)

Tables 2 and 3 display the truncated, for two different kn rules, empirical values of E

∥ρ(Xn−1)−ρkn(Xn−1)∥H


, based on

N = 700 generations of each one of the functional samples consideredwith size nt = 15 000+20 000(t−1), t = 1, . . . , 20,
when Cj = bC j−δ1 , bC > 0, and ρj = bρ j−δ2 , bρ > 0. Specifically,ρkn is computed from Eqs. (25) and (26) (see third column),ρkn = ρn, withρn being given in Eqs. (90)–(91) (see fourth column), andρkn = ρn,a, withρn,a being defined in (92)–(93)
(see fifth column).

In Table 2, δ1 = 2.4, δ2 = 1.1, and kn = n1/α , for α = 6, according to Assumption A3, which is also considered in p. 217
of [9] to ensure weak consistency of the proposed estimator of ρ. In Table 3, the same empirical values are displayed for
δ1 = 61/60, δ2 = 1.1, and kn is selected according to Example 2, in p. 286 of [28]. Thus, in Table 3,

kn = n
1−2ϵ

δ1(4+2γ ) , γ ≥ 1, ϵ < 1/2. (95)

In particular, we have chosen γ = 2, and ϵ = 0.04δ1. Note that, from Theorem 1 and Remark 1 in [28], for the choice made
of kn in Table 3, convergence to ρ, in quadratic mean in the space L(H), holds forρn,a given in Eqs. (92)–(93).
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Table 3
Truncated empirical values of E


∥ρ(Xn−1)−ρkn (Xn−1)∥H


, for ρkn given in Eqs. (25)–(26) (third column), in Eqs. (90)–(91) (fourth column), and in

Eqs. (92)–(93) (fifth column), for δ1 = 61/60 and δ2 = 1.1, considering the sample sizes nt = 15 000+20 000(t−1), t = 1, . . . , 20, and the corresponding
kn values given in (95).

n kn Our Approach Bosq [9] Guillas [28]

n1 = 15 000 2 9.91 (10)−3 1.39 (10)−2 1.26 (10)−2

n2 = 35 000 3 8.78 (10)−3 1.34 (10)−2 1.24 (10)−2

n3 = 55 000 3 7.89 (10)−3 1.15 (10)−2 1.14 (10)−2

n4 = 75 000 3 6.49 (10)−3 1.01 (10)−2 8.58 (10)−3

n5 = 95 000 3 6.36 (10)−3 9.09 (10)−3 8.29 (10)−3

n6 = 115 000 3 6.14 (10)−3 7.65 (10)−3 7.26 (10)−3

n7 = 135 000 3 5.91 (10)−3 7.03 (10)−3 6.69 (10)−3

n8 = 155 000 3 5.73 (10)−3 6.77 (10)−3 6.54 (10)−3

n9 = 175 000 3 5.44 (10)−3 6.74 (10)−3 6.16 (10)−3

n10 = 195 000 3 5.10 (10)−3 6.69 (10)−3 5.97 (10)−3

n11 = 215 000 4 5.01 (10)−3 6.48 (10)−3 5.94 (10)−3

n12 = 235 000 4 4.85 (10)−3 6.45 (10)−3 5.83 (10)−3

n13 = 255 000 4 4.17 (10)−3 6.17 (10)−3 5.68 (10)−3

n14 = 275 000 4 4.64 (10)−3 5.99 (10)−3 5.60 (10)−3

n15 = 295 000 4 4.55 (10)−3 5.94 (10)−3 5.58 (10)−3

n16 = 315 000 4 4.48 (10)−3 5.69 (10)−3 5.50 (10)−3

n17 = 335 000 4 4.38 (10)−3 5.58 (10)−3 5.44 (10)−3

n18 = 355 000 4 4.16 (10)−3 5.45 (10)−3 5.42 (10)−3

n19 = 375 000 4 3.91 (10)−3 5.34 (10)−3 5.32 (10)−3

n20 = 395 000 4 3.86 (10)−3 5.29 (10)−3 5.26 (10)−3

One can observe in Table 2 a similar performance of the three methods compared with the truncation order kn satisfying
Assumption A3, with slightly worse results being obtained from the estimator defined in Eqs. (92)–(93), especially, for the
sample size n8 = 155 000. Furthermore, in Table 3, a better performance of our approach is observed for the smallest sample
sizes (from n1 = 15 000 to n4 = 75 000). For the remaining largest sample sizes, only slight differences are observed, with,
again, a better performance of our approach, very close to the other two approaches presented in [9,28].

5.2.2. Empirical-eigenvector-based component-wise estimators
In this section, we address the case where


φj : j ≥ 1


are unknown, as is often the case in practice. Specifically, for a

given sample size n, let

φn,j : j ≥ 1


be the empirical counterpart of the theoretical eigenvectors


φj : j ≥ 1


satisfying, for

every j ≥ 1,

Cn(φn,j) =
1
n

n−1
i=0


Xi, φn,j


H Xi = Cn,jφn,j

where

Cn,j : j ≥ 1


denotes the system of eigenvalues associated with the system of empirical eigenvectors


φn,j : j ≥ 1


.

We then consider the following estimators for comparison purposes

ρn,j =

1
n−1

n−2
i=0

Xi,jXi+1,j

1
n

n−1
i=0
(Xi,j)2

, ρkn =

kn
j=1

ρn,jφn,j ⊗ φn,j (96)

ρn(x) =
Π knDnC−1

n
Π kn


(x) =

kn
l=1

ρn,l(x)φn,l, x ∈ H

ρn,l(x) =
1

n − 1

n−2
i=0

kn
j=1

1
Cn,j

⟨φn,j, x⟩HXi,jXi+1,l (97)

ρn,a(x) =
Π knDnC−1

n,a
Π kn


(x) =

kn
l=1

ρn,a,l(x)φn,l, x ∈ H,

ρn,a,l(x) =
1

n − 1

n−2
i=0

kn
j=1

1
max


Cn,j, an

 ⟨φn,j, x⟩HXi,jXi+1,l, (98)

where, for i ∈ Z, and j ≥ 1, Xi,j =

Xi, φn,j


H ,
Π kn denotes the orthogonal projector into the space Hkn = span


φn,1,

. . . , φn,kn


.
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Table 4
Truncated empirical values of E


∥ρ(Xn−1)−ρkn (Xn−1)∥H


, forρkn defined in Eq. (96) (third column), forρkn = ρn given in Eq. (97) (fourth column), and

forρkn = ρn,a in Eq. (98) (fifth column), for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes nt = 15 000 + 20 000(t − 1), t = 1, . . . , 20, and
kn = ln(n).

n kn Our Approach Bosq [9] Guillas [28]

n1 = 15 000 9 8.42 (10)−2 1.0614 1.0353
n2 = 35 000 10 5.51 (10)−2 1.0186 1.0052
n3 = 55 000 10 4.75 (10)−2 1.0174 0.9986
n4 = 75 000 11 4.43 (10)−2 1.0153 0.9951
n5 = 95 000 11 3.68 (10)−2 1.0127 0.9883
n6 = 115 000 11 3.51 (10)−2 1.0113 0.9627
n7 = 135 000 11 3.23 (10)−2 1.0081 0.9247
n8 = 155 000 11 2.95 (10)−2 1.0066 0.9119
n9 = 175 000 12 2.94 (10)−2 1.0057 0.9113
n10 = 195 000 12 2.80 (10)−2 0.9948 0.8912
n11 = 215 000 12 2.71 (10)−2 0.9017 0.8615
n12 = 235 000 12 2.59 (10)−2 0.8896 0.8201
n13 = 255 000 12 2.58 (10)−2 0.8783 0.8004
n14 = 275 000 12 2.35 (10)−2 0.8719 0.7832
n15 = 295 000 12 2.28 (10)−2 0.8602 0.7780
n16 = 315 000 12 2.27 (10)−2 0.8424 0.7469
n17 = 335 000 12 2.16 (10)−2 0.8217 0.7140
n18 = 355 000 12 2.14 (10)−2 0.8001 0.7066
n19 = 375 000 12 2.09 (10)−2 0.7778 0.6872
n20 = 395 000 12 2.06 (10)−2 0.7693 0.6621

The Gaussian ARH(1) process is generated under Assumptions A1–A2, as well as C ′

1 in p. 218 in [9]. Note that conditions
A1 and B′

1 in [9] already hold. Moreover, as given in Theorem 8.8 and Example 8.6, in p. 221 of [9], for Cj = bC j−δ1 , (bC > 0,
δ1 > 1), with, in particular, δ1 = 2.4, and for ρj = bρ j−δ2 , bρ > 0, with δ2 = 1.1, the estimatorρn converges almost surely
to ρ under the condition

nC2
kn

ln(n)


kn
j=1

uj

2 −→ ∞,

where

uj = 2
√
2max


(Cj−1 − Cj)

−1, (Cj − Cj+1)
−1 , j ≥ 2.

In Table 4, kn ≃ ln(n) was tested; see Example 8.6, in p. 221 of [9]. A better performance of our estimator (96) in
comparison with estimator (97), formulated in [9], and estimator (98), formulated in [28] – see Example 4 and Remark 4,
in p. 291 of [28] – is observed in Table 4. Note that, in particular, in Example 4 and Remark 4, in p. 291 of [28], smaller
values of kn than ln(n) are required for a given sample size n, to ensure convergence in quadratic mean, and, in particular,
weak-consistency.

However, considering a smaller discretization step size∆t = 0.015 than in Table 4, where∆t = 0.08, and for kn = n1/6,
(i.e., α = 6), we obtain in Table 5, for the same parameter values δ1 = 2.4 and δ2 = 1.1, better results than in Table 4, since
a smaller number of coefficients of ρ (parameters) must be estimated in Table 5, from a richer sample information (coming
from the smaller discretization step size considered). One can also observe in Table 5 a similar performance of the three
approaches studied.

In Table 6, the value kn = ⌈e′n1/(8δ1+2)⌉, e′
= 17/10, proposed in Example 4 and Remark 4, in p. 291 of [28], is considered

to compute the truncated empirical values of E

∥ρ(Xn−1)−ρkn(Xn−1)∥H


, forρkn defined in Eq. (96) (third column), forρkn =ρn given in Eq. (97) (fourth column), and forρkn =ρn,a in Eq. (98) (fifth column). A similar performance of the three

approaches is observed, with the exception of n20 = 395 000, where the approach presented in [28] displays a slightly better
performance.

5.2.3. Kernel-based nonparametric and penalized estimation
In practice, curves are observed in discrete times, and should be approximated by smooth functions. In [7], the following

optimization problem is considered:

Xi = argmin∥LXi∥
2
L2 ,

Xi(tj) = Xi(tj), j = 1, . . . , p, i = 0, . . . , n − 1, (99)
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Table 5
Truncated empirical values of E


∥ρ(Xn−1)−ρkn (Xn−1)∥H


, forρkn defined in Eq. (96) (third column), forρkn = ρn given in Eq. (97) (fourth column), and

forρkn =ρn,a in Eq. (98) (fifth column), for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes nt = 15 000+20 000(t−1), t = 1, . . . , 20, and kn = n1/6 .

n kn Our Approach Bosq [9] Guillas [28]

n1 = 15 000 4 9.88 (10)−2 9.25 (10)−2 0.1059
n2 = 35 000 5 9.52 (10)−2 9.07 (10)−2 9.86 (10)−2

n3 = 55 000 6 9.12 (10)−2 8.92 (10)−2 9.39 (10)−2

n4 = 75 000 6 8.48 (10)−2 8.64 (10)−2 8.98 (10)−2

n5 = 95 000 6 7.61 (10)−2 8.30 (10)−2 8.46 (10)−2

n6 = 115 000 6 7.05 (10)−2 7.96 (10)−2 8.04 (10)−2

n7 = 135 000 7 6.99 (10)−2 7.84 (10)−2 7.82 (10)−2

n8 = 155 000 7 6.70 (10)−2 7.45 (10)−2 7.40 (10)−2

n9 = 175 000 7 6.49 (10)−2 7.03 (10)−2 7.07 (10)−2

n10 = 195 000 7 5.88 (10)−2 6.74 (10)−2 6.80 (10)−2

n11 = 215 000 7 5.63 (10)−2 6.46 (10)−2 6.57 (10)−2

n12 = 235 000 7 5.30 (10)−2 6.28 (10)−2 6.37 (10)−2

n13 = 255 000 7 5.05 (10)−2 6.19 (10)−2 6.24 (10)−2

n14 = 275 000 8 4.88 (10)−2 5.99 (10)−2 6.15 (10)−2

n15 = 295 000 8 4.58 (10)−2 5.74 (10)−2 6.04 (10)−2

n16 = 315 000 8 4.24 (10)−2 5.52 (10)−2 5.93 (10)−2

n17 = 335 000 8 3.86 (10)−2 5.24 (10)−2 5.70 (10)−2

n18 = 355 000 8 3.70 (10)−2 5.02 (10)−2 5.53 (10)−2

n19 = 375 000 8 3.55 (10)−2 4.88 (10)−2 5.36 (10)−2

n20 = 395 000 8 3.46 (10)−2 4.70 (10)−2 5.23 (10)−2

where L is a linear differential operator of order d. Our interpolation is computed by Matlab smoothingspline method.
Non-linear kernel regression is then considered, in terms of the smoothed functional data, solution to (99), as follows:

Xhn
n =ρhn(Xn−1), ρhn(x) =

n−2
i=0

Xi+1K


∥Xi−x∥
2
L2

hn


n−2
i=0

K


∥Xi−x∥
2
L2

hn

 , (100)

where K is the usual Gaussian kernel, and ∥Xi − x∥2
L2

=

{Xi(t)− x(t)}2dt , for i = 0, . . . , n − 2.

Alternatively, in [7], prediction, in the context of Functional Autoregressive processes (FAR(1) processes), under the linear
assumption on ρ, which is considered to be a compact operator, with ∥ρ∥ < 1, is also studied, from smooth dataX1, . . . ,Xn,
solving the optimization problem

minXi∈Hq

1
n

n−1
i=0


1
p

p
j=1


Xi(tj)−Xq,ℓ

i (tj)
2

+ ℓ

D2Xq,ℓ
i

2
L2


, (101)

where ℓ is the smoothing parameter, andHq is the q-dimensional functional subspace spanned by the leading eigenvectors of
the autocovariance operator C associated with its largest eigenvalues. Thus, smoothness and rank constraint are considered
in the computation of the solution to the optimization problem (101). Such a solution is obtained by means of functional
PCA.

The following regularized empirical estimators of C and D are then defined, with inversion of C in the subspace Hq:

Cq,l =
1
n

n−1
i=0

Xi ⊗Xi, Dq,l =
1

n − 1

n−2
i=0

Xi ⊗Xi+1.

Thus, the regularized estimator of ρ is given byρq,l =Dq,lC−1
q,l , and the predictorXq,l

n =ρq,l(Xn−1). Due to computational
cost limitations, in Table 7, the following statistics are evaluated to compare the performance of the two above-referred
prediction methodologies:

EMAEhnXn =
1
p

p
j=1

{Xn(tj)−Xhn
n (tj)}

2 (102)

EMAEq,lXn =
1
p

p
j=1

{Xn(tj)−Xq,l
n (tj)}

2. (103)

It can be observed a similar performance of the kernel-based and penalized FAR(1) predictors, from smooth functional
data, which is also comparable, considering one realization, to the performance obtained in Table 6 from the empirical
eigenvectors.



J. Álvarez-Liébana et al. / Journal of Multivariate Analysis 155 (2017) 12–34 31

Table 6
Truncated empirical values of E


∥ρ(Xn−1)−ρkn (Xn−1)∥H


, forρkn defined in Eq. (96) (third column), forρkn = ρn given in Eq. (97) (fourth column), and

forρkn = ρn,a in Eq. (98) (fifth column), for δ1 = 2.4 and δ2 = 1.1, considering the sample sizes nt = 15 000 + 20 000(t − 1), t = 1, . . . , 20, and
kn = ⌈e′n1/(8δ1+2)⌉, e′

= 17/10.

n kn Our Approach Bosq [9] Guillas [28]

n1 = 15 000 2 6.78 (10)−2 8.77 (10)−2 6.64 (10)−2

n2 = 35 000 2 6.72 (10)−2 8.61 (10)−2 6.30 (10)−2

n3 = 55 000 2 6.46 (10)−2 8.48 (10)−2 6.17 (10)−2

n4 = 75 000 2 6.24 (10)−2 8.20 (10)−2 5.76 (10)−2

n5 = 95 000 2 5.42 (10)−2 7.84 (10)−2 5.03 (10)−2

n6 = 115 000 2 4.84 (10)−2 7.34 (10)−2 4.56 (10)−2

n7 = 135 000 2 4.27 (10)−2 6.95 (10)−2 3.94 (10)−2

n8 = 155 000 2 3.64 (10)−2 6.60 (10)−2 3.65 (10)−2

n9 = 175 000 3 3.51 (10)−2 6.52 (10)−2 3.42 (10)−2

n10 = 195 000 3 3.38 (10)−2 6.16 (10)−2 3.24 (10)−2

n11 = 215 000 3 3.16 (10)−2 5.78 (10)−2 2.85 (10)−2

n12 = 235 000 3 2.98 (10)−2 5.53 (10)−2 2.60 (10)−2

n13 = 255 000 3 2.83 (10)−2 5.15 (10)−2 2.34 (10)−2

n14 = 275 000 3 2.50 (10)−2 4.85 (10)−2 2.05 (10)−2

n15 = 295 000 3 2.23 (10)−2 4.46 (10)−2 1.83 (10)−2

n16 = 315 000 3 2.15 (10)−2 4.30 (10)−2 1.58 (10)−2

n17 = 335 000 3 2.06 (10)−2 4.14 (10)−2 1.40 (10)−2

n18 = 355 000 3 1.98 (10)−2 3.95 (10)−2 1.24 (10)−2

n19 = 375 000 3 1.89 (10)−2 3.77 (10)−2 1.05 (10)−2

n20 = 395 000 3 1.82 (10)−2 3.70 (10)−2 9.93 (10)−3

Table 7
EMAEhn,iXn , i = 1, 2, and EMAEq,lXn values (see Eqs. (102) and (103), respectively), with q = 7, for δ1 = 2.4 and δ2 = 1.1, considering now the sample sizes
nt = 750 + 500(t − 1), t = 1, . . . , 13, hn,1 = 0.1 and hn,2 = 0.3.

n kn EMAEhn,1Xn EMAEhn,2Xn EMAEq,lXn
n1 = 750 3 0.0857 0.0885 0.0899
n2 = 1250 3 0.0767 0.0843 0.0869
n3 = 1750 3 0.0715 0.0712 0.0805
n4 = 2250 3 0.0709 0.0687 0.0759
n5 = 2750 3 0.0687 0.0667 0.0731
n6 = 3250 3 0.0652 0.0592 0.0728
n7 = 3750 3 0.0620 0.0556 0.0713
n8 = 4250 4 0.0606 0.0532 0.0706
n9 = 4750 4 0.0567 0.0525 0.0647
n10 = 5250 4 0.0524 0.0512 0.0608
n11 = 5750 4 0.0501 0.0482 0.0575
n12 = 6250 4 0.0490 0.0449 0.0533
n13 = 6750 4 0.0487 0.0387 0.0497

5.2.4. Wavelet-based prediction for ARH(1) processes
The approach presented in [4] is now studied. Specifically, wavelet-based regularization is applied to obtain smooth

estimates of the sample paths. The projection onto the space VJ , generated by translations of the scaling function φJk, k =

0, . . . , 2J
− 1, at level J , associated with a multiresolution analysis of H , is first considered. For a given primary resolution

level j0, with j0 < J , the following wavelet decomposition at J − j0 resolution levels can be computed for any projected curve
ΦVJXi, in the space VJ , for i = 0, . . . , n − 1:

ΦVJXi =

2j0−1
k=0

c ij0kφj0k +

J−1
j=j0

2j−1
k=0

dijkψjk

c ij0k = ⟨ΦVJXi, φj0k⟩H , dijk = ⟨ΦVJXi, ψjk⟩H . (104)

For i = 0, . . . , n − 1, the following variational problem is solved to obtain the smooth estimate of the curve Xi:

inf
f i∈H

ΦVJXi − f i
2
L2

+ λ

ΦV⊥
j0
f i
2 : f i ∈ H


, (105)
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whereΦV⊥
j0
denotes the orthogonal projection operator ofH onto the orthogonal complement of Vj0 , and for i = 0, . . . , n−1,

f i =

2j0−1
k=0

αi
j0kφj0k +

∞
j=j0

2j−1
k=0

β i
jkψjk.

Using the equivalent sequence of norms of fractional Sobolev spaces of order s with s > 1/2, on a suitable interval (in our
case s = δ1), the minimization of (105) is equivalent to the optimization problem, for i = 0, . . . , n − 1,

2j0−1
k=0

(αi
j0k − c ij0k)

2
+

J−1
j=j0

2j−1
k=0

(dijk − β i
jk)

2
+

∞
j=j0

2j−1
k=0

λ2js(β i
jk)

2. (106)

The solution to (106) is given, for i = 0, . . . , n − 1, byαi
j0k

= c ij0k, k = 0, . . . , 2j0 − 1 (107)

β i
jk =

dijk
(1 + λ22sj)

, k = 0, . . . , 2j
− 1, j = j0, . . . , J − 1 (108)

β i
jk = 0, k = 0, . . . , 2j

− 1, j ≥ J. (109)

In particular, in the subsequent computations, we have considered the smoothing parameter

λM =
1
n


M
j=1

σ 2
j


M
j=1

Cj


;

see [3]. The following smoothed data are then computed

Xi,λM =

2j0−1
k=0

αi
j0k
φj0k +

J−1
j=j0

2j−1
k=0

β i
jkψjk, (110)

removing the trendan,λM =
n−1

i=0
Xi,λM /n to obtainYi,λM =Xi,λM −an,λM , i = 0, . . . , n − 1, for the computation of

ρn,λM (x) =

Π knλMDn,λMC−1
n,λMΠ knλM


(x) =

kn
ℓ=1

ρn,λM ,ℓ(x)φM
ℓ ,

ρn,λM ,ℓ(x) =

kn
j=1

1
n − 1

n−2
i=0

1Cn,λM ,j ⟨φM
j , x⟩HYi,λM ,jYi+1,λM ,ℓ,

for x ∈ H , and

Cn,λM =
1
n

n−1
i=0

Yi,λM ⊗Yi,λM ,
whereYi,λM ,j =

Yi,λM ,φj,λM  , and Cn,λM ,j =
Cn,λMφj,λM ,φj,λM  ,

for every j ≥ 1. Table 8 displays the empirical truncated approximations of

E

∥ρkn(Xn−1)− ρ(Xn−1)∥H


and E{∥ρn,λM (Xn−1)− ρ(Xn−1)∥H},

respectively obtained by applying our approach, and the approach in [4], in the estimation of the autocorrelation operator
ρ. Here, we have tested kni = n1/αi , i = 1, 2, with α1 = 6, according to Assumption A3, and α2 > 4δ1, according to
H4 : nC4

kn → ∞ in p. 149 of [4]. In particular, we have considered δ1 = 2.4, and α2 = 10.
From the results displayed in Table 8, one can observe a similar performance for the two truncation rules implemented,

and approaches compared, for the small sample sizes tested. A similar performance is also displayed by the approaches
presented in [7], for such small sample sizes; see Table 7.
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Table 8
Truncated empirical values of E{∥ρ(Xn−1) −ρkn (Xn−1)∥H }, withρkn defined in Eq. (96), and of E{∥ρn,λM (Xn−1) − ρ(Xn−1)∥H }, for δ1 = 2.4 and δ2 = 1.1,
considering the sample sizes nt = 750 + 500(t − 1), t = 1, . . . , 13, usingλM , M = 50, and the corresponding kn,i = n1/αi , for α1 = 6, α2 = 10. Here,
O.A. means Our Approach and [4] means The approach presented in [4].

n kn,1 O.A. [4] kn,2 O.A. [4]

n1 = 750 3 0.0702 0.0911 1 0.0636 0.0589
n2 = 1250 3 0.0550 0.0873 2 0.0509 0.0429
n3 = 1750 3 0.0473 0.0803 2 0.0455 0.0394
n4 = 2250 3 0.0414 0.0795 2 0.0409 0.0377
n5 = 2750 3 0.0365 0.0734 2 0.0355 0.0349
n6 = 3250 3 0.0343 0.0719 2 0.0333 0.0307
n7 = 3750 3 0.0330 0.0675 2 0.0325 0.0293
n8 = 4250 4 0.0328 0.0672 2 0.0313 0.0286
n9 = 4750 4 0.0317 0.0664 2 0.0309 0.0256
n10 = 5250 4 0.0309 0.0636 2 0.0276 0.0229
n11 = 5750 4 0.0298 0.0598 2 0.0203 0.0196
n12 = 6250 4 0.0283 0.0583 2 0.0166 0.0153
n13 = 6750 4 0.0276 0.0555 2 0.0148 0.0137

6. Final comments

As noted before, in this paper, the eigenvectors of C are considered to be known in the derivation of the results on
consistency. This assumption is satisfied, e.g., when the random initial condition is given as the solution, in themean-square
sense, of a stochastic differential equation driven by white noise (e.g., the Wiener measure), since the eigenvectors of the
differential operator involved in that equation coincide with the eigenvectors of the autocovariance operator of the ARH(1)
process.

In the case where the eigenvectors of the autocovariance operator are unknown, the numerical results displayed in
Section 5.2.2 (see Tables 4–6) illustrate the fact that our approach displays, in terms of the empirical eigenvectors, very
similar prediction results to those obtained with the implementation of the component-wise estimators proposed in [9,28],
with a better performance of our approach in the more unfavorable case, corresponding to a large discretization step size,
and truncation order; see Table 4 computed for kn = ln(n).

Regarding Assumption A2, Remark 1 provides an example where this assumption is satisfied. However, our approach
can still be applied in a wider range of situations. Wavelet bases are well suited for sparse representation of functions;
recent work has considered combining them with sparsity-inducing penalties, both for semiparametric regression (see,
e.g., [55]), and for regression with functional or kernel predictors; see [55–57], among others. The latter papers focused on
ℓ1 penalization, also known as the lasso [52], in the wavelet domain. Alternatives to the lasso include the SCAD penalty [19],
and the adaptive lasso [58]. The ℓ1 penalty in the elastic net criterion has the effect of shrinking small coefficients to zero.
This can be interpreted as imposing a prior that favors a sparse estimate.

The abovementioned smoothing techniques, based onwavelets, can be applied to obtain a smooth sparse approximationX1, . . .Xn of the functional data X1, . . . , Xn, whose empirical autocovariance operator, and cross-covariance operator,
respectively defined byCn =

1
n

n−1
i=0

Xi ⊗ Xi, and Dn =
1

n−1

n−2
i=0

Xi ⊗ Xi+1, admit a diagonal representation in terms
of wavelets. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed
to circumvent the limitations of the sample covariance matrix. In particular, a new family of nonparametric Stein-type
shrinkage covariance estimators is proposed in [53] (see also references therein), whose members are written as a convex
linear combination of the sample covariance matrix and of a predefined invertible diagonal target matrix. These results
can be applied to our framework, considering the shrinkage estimators of the autocovariance, C , and cross-covariance, D,
operators, with respect to a common suitable wavelet basis, which can lead to an empirical diagonal representation of both
operators.

In the supplementary material (see Appendix A), a numerical example is provided to illustrate the performance of our
approach, in the case of a pseudo-diagonal autocorrelation operator.
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