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Marie Curie–Paris 6, Paris, France.
E-mail: javialvaliebana@ugr.es

Summary

New results on functional prediction of the Ornstein-Uhlenbeck process in an autoregressive Hilbert-valued

and Banach-valued frameworks are derived. Specifically, consistency of the maximum likelihood estimator of the

autocorrelation operator, and of the associated plug-in predictor is obtained in both frameworks.
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1 Introduction

This paper derives new results in the context of linear processes in function spaces. An extensive

literature has been developed in this context in the last few decades (see, for example, Bosq [2000];

Ferraty and Vieu [2006]; Ramsay and Silverman [2005]; among others). In particular, the problem of

functional prediction of linear processes in Hilbert and Banach spaces has been widely addressed. We

refer to the reader to the papers by Bensmain and Mourid [2001], Bosq [1996, 2002, 2004, 2007], Guillas

[2000, 2001], Mas [2002, 2004, 2007], Mas and Menneteau [2003a]; Menneteau [2005], Labbas and Mourid

[2002]; Mokhtari and Mourid [2003]; Mourid [2002, 2004] Rachedi [2004, 2005]; Rachedi and Mourid

[2003], Dedecker and Merlevède [2003]; Dehling and Sharipov [2005]; Glendinning and Fleet [2007]; Kargin and Onatski

[2008]; Ruiz-Medina [2012], Marion and Pumo [2004]; Pumo [1998] and Turbillon et al. [2008, 2007]; and

the references therein. In the above–mentioned papers, different projection methodologies have been ad-

opted in the derivation of the main asymptotic properties of the formulated functional parameter estim-

ators and predictors. Particularly, Bosq [2000]; Bosq and Blanke [2007] apply Functional Principal Com-

ponent Analysis (FPCA); Antoniadis et al. [2006]; Antoniadis and Sapatinas [2003]; Laukaitis and Vasilecas
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[2009] propose wavelet–bases–based estimation methods. Applications of these functional estimation

results can be found in the papers by Antoniadis and Sapatinas [2003]; Damon and Guillas [2002];

Hörmann and Kokoszka [2011]; Laukaitis [2008]; Ruiz-Medina and Salmerón [2009]; among others.

We here pay attention to the problem of functional prediction of the Ornstein–Uhlenbeck (O.U.)

process (see, for example, Uhlenbeck and Ornstein [1930]; Wang and Uhlenbeck [1945], for its introduc-

tion and properties). See also Doob [1942] for the classical definition of O.U. process from the Langevin

(linear) stochastic differential equation. We can find in Kutoyants [2004]; Liptser and Shiraev [2001] an

explicit expression of the maximum likelihood estimator (MLE) of the scale parameter θ, characterizing

its covariance function. Its strong consistency is proved, for instance, in Kleptsyna and Breton [2002].

We formulate here the O.U. process as an autoregressive Hilbertian process of order one (so–called

ARH(1) process), and as an autoregressive Banach–valued process of order one (so–called ARB(1) pro-

cess). Consistency of the MLE of θ is applied to prove the consistency of the corresponding MLE of the

autocorrelation operator of the O.U. process. We adopt the methodology applied in Bosq [1991], since

our interest relies on forecasting the values of the O.U. process over an entire time interval. Specifically,

considering the O.U. process {ξt, t ∈ R} on the basic probability space (Ω,A,P), we can define

Xn(t) = ξnh+t, 0 ≤ t ≤ h, n ∈ Z, (1)

satisfying

Xn (t) = ξnh+t =

∫ nh+t

−∞
e−θ(nh+t−s)dWs = ρθ (Xn−1) (t) + εn (t) , n ∈ Z, (2)

with

ρθ (x) (t) = e−θtx (h) , ρθ (Xn−1) (t) = e−θt

∫ nh

−∞
e−θ(nh−s)dWs,

εn (t) =

∫ nh+t

nh

e−θ(nh+t−s)dWs,

(3)

for 0 ≤ t ≤ h, where W = {Wt, t ∈ R} is a standard bilateral Wiener process (see Supplementary Mater-

ial 5). Thus, X = {Xn, n ∈ Z} satisfies the ARH(1) equation (2) (see also equation (4) below for its gen-

eral definition). The real separable Hilbert space H is given by

H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, where β[0,h] is the Borel σ-algebra generated by the subintervals in

[0, h] , λ is the Lebesgue measure and δ(h)(s) = δ (s− h) is the Dirac measure at point h. The associated
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norm

‖f‖H =

√∫ h

0

(f(t))
2
dt+ (f(h))

2
, f ∈ H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
,

establishes the equivalent classes of functions given by the relationship f ∼λ+δ(h)
g if and only if

(
λ+ δ(h)

)
({t : f (t) 6= g (t)}) = 0,

with

(
λ+ δ(h)

)
({t : f (t) 6= g (t)}) = 0 ⇔ λ ({t : f (t) 6= g (t)}) = 0 and f (h) = g (h) ,

where, as before, δ(h) is the Dirac measure at point h. We will prove, in Lemma 1 below, that

X = {Xn, n ∈ Z} , constructed in (1) from the O.U. process, satisfying equations (2)–(3), is the unique

stationary solution to equation (2), in the space H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, admitting a MAH(∞)

representation. Similarly, in Lemma 4 below, we will prove that X = {Xn, n ∈ Z}, constructed in (1)

from the O.U. process, satisfying equations (2)–(3), is the unique stationary solution to equation (2),

admitting a MAB(∞) representation, in the space B = C ([0, h]) , the real separable Banach space of

continuous functions, whose support is the interval [0, h] , with the supremum norm.

The main results of this paper provide the almost surely convergence to ρθ of its MLE ρ
θ̂
, in the

norm of L(H), the space of bounded linear operators in the Hilbert space H (respectively, in the norm of

L(B), the space of bounded linear operators in the Banach space B). The convergence in probability of

the associated plug–in ARH(1) and ARB(1) predictors (i.e., the convergence in probability of ρ
θ̂
(Xn−1)

to ρθ(Xn−1) in H and B, respectively) is proved as well.

The outline of this paper is as follows. In Appendix 2, the main results of this paper are obtained.

Specifically, Appendix 2.1 provides the definition of an O.U. process as an ARH(1) process. Strong con-

sistency in L(H) of the estimator of the autocorrelation operator is derived in Appendix 2.2. Consistency

in H of the associated plug–in ARH(1) predictor is then established in Appendix 2.3. The corresponding

results in Banach spaces are given in Appendix 2.4. For illustration purposes, a simulation study is un-

dertaken in Appendix 3. Final comments can be found in Appendix 4. The basic preliminary elements,

applied in the proof of the main results of this paper, and the proof of Lemma 1, can be found in the

Supplementary Material 5.

2 Prediction of O.U. processes in Hilbert and Banach spaces

In this section, we consider H to be a real separable Hilbert space. Recall that a zero–mean ARH(1)
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process X = {Xn, n ∈ Z}, on the basic probability space (Ω,A,P), satisfies (see Bosq [2000])

Xn(t) = ρ (Xn−1) (t) + εn(t), n ∈ Z, ρ ∈ L(H), (4)

where ρ denotes the autocorrelation operator of process X. Here, ε = {εn, n ∈ Z} is assumed to be

a strong–white noise; i.e., ε is a Hilbert–valued zero-mean stationary process, with independent and

identically distributed components in time, with σ2 = E
{
‖εn‖2H

}
< ∞, for all n ∈ Z.

2.1 O.U. processes as ARH(1) processes

As commented in Appendix 1, equations (1)–(3) provide the definition of an O.U. process as an

ARH(1) process, with H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
. The norm in the space H of ρθ(x), with ρθ

introduced in (3) and x ∈ H, is given by

‖ρθ(x)‖2H =

∫ h

0

(ρθ (x) (t))
2
d
(
λ+ δ(h)

)
(t) =

∫ h

0

(ρθ (x) (t))
2
dt+ (ρθ (x) (h))

2
,

for each h > 0. The following lemma provides, for each k ≥ 1, the exact value of the norm of ρkθ , in the

space of bounded linear operators on H. As a direct consequence, the existence of an integer k0 such

that ‖ρkθ‖L(H) < 1, for k ≥ k0, is also derived for θ > 0.

Lemma 1 Let us consider θ > 0 and X = {Xn, n ∈ Z} satisfying equations (1)–(3). For each k ≥ 1,

the uniform norm of ρkθ is given by

‖ρkθ‖L(H) =

√
e−2θ(k−1)h

(
1 + e−2θh (2θ − 1)

2θ

)
= e−θ(k−1)h‖ρθ‖L(H). (5)

Furthermore, for k ≥ k0 =
[
1
θ
+ 1
]+

,

‖ρkθ‖L(H) < 1, (6)

where [t]+ denotes the closest upper integer of t, for every t ∈ R+.

The proof of this lemma can be found in the Supplementary Material 5 provided.

Remark 1 From equation (6), applying [Bosq, 2000, Theorem 3.1], Lemma 1 implies that X construc-

ted in (1) from an O.U. process, defines the unique stationary solution to equation (2) in the space

H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, admitting the MAH(∞) representation

Xn =

+∞∑

k=0

ρkθ (εn−k) , n ∈ Z, ρθ ∈ L (H) .
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Remark 2 Note that, for all x ∈ H, and k ≥ 2, ‖ρkθ‖L(H) ≤ ‖ρθ‖kL(H).

2.2 Functional parameter estimation and consistency

We now prove the strong consistency of the estimator ρ
θ̂n

of operator ρθ in L(H), with, as before,

H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, and θ̂n denoting the MLE of θ, based on the observation of an O.U.

process on the interval [0, T ], with T = nh. Note that, from equation (3), for all x ∈ H, and for a given

sample size n,

ρ
θ̂n
(x) = e−θ̂ntx (h) ,

where the MLE of θ is given, for T = nh, by

θ̂T =
1 +

ξ20
T

− ξ2T
T

2
T

∫ T

0

ξ2t dt

, T > 0, (7)

with {ξt, t ∈ [0, T ]} being the observed values of the O.U. process over the interval [0, T ]. Thus, ρ
θ̂n

is introduced in an abstract way, since it can only be explicitly computed, for each particular function

x ∈ H considered. However, the norm ‖ρθ − ρ
θ̂n
‖L(H) is explicitly computed in equation (8) below.

The following results will be applied in the proof of Proposition 1.

Lemma 2 If t ∈ [0,+∞), it holds that

|e−ut − e−vt| ≤ |u− v|t, u, v ≥ 0.

The proof of this lemma is given in the Supplementary Material 5.

Theorem 1 (See also [Kleptsyna and Breton, 2002, Proposition 2.2] and [Kutoyants, 2004, p. 63 and

p. 117]). The MLE of θ defined in equation (7) is strongly consistent; i.e.,

θ̂T −→ θ a.s., T → ∞.

The proof follows from the Ibragimov–Khasminskii’s Theorem.
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Proposition 1 Let H be the space L2
(
[0, h] , β[0,h], λ+ δ(h)

)
. Then, the estimator ρ

θ̂n
of operator ρθ,

based on the MLE θ̂n of θ, is strongly consistent in the norm of L (H); i.e.,

‖ρθ − ρ
θ̂n
‖L(H) −→ 0 a.s., n → ∞.

Proof. The following straightforward almost surely identities are obtained:

‖ρθ − ρ
θ̂n
‖L(H) = sup

x∈H





‖
(
ρθ − ρ

θ̂n

)
(x) ‖H

‖x‖H





= sup
x∈H





√√√√√√√√

∫ h

0

((
ρθ − ρ

θ̂n

)
(x) (t)

)2
d
(
λ+ δ(h)

)
(t)

∫ h

0

(x (t))
2
d
(
λ+ δ(h)

)
(t)





= sup
x∈H





√√√√√√√√
(x (h))

2

∫ h

0

(
e−θt − e−θ̂nt

)2
dt+

(
e−θh − e−θ̂nh

)2

∫ h

0

(x (t))2 dt+ (x (h))2





=

√∫ h

0

(
e−θt − e−θ̂nt

)2
dt+

(
e−θh − e−θ̂nh

)2
, (8)

where the last identity is obtained in a similar way to equation (5) in Lemma 1 (see Supplementary

Material 5).

From Lemma 2 and equation (8), for n sufficiently large, we have

‖ρθ − ρ
θ̂n
‖L(H) ≤

√∫ h

0

t2|θ − θ̂n|2dt+ h2|θ − θ̂n|2 = |θ − θ̂n|
√∫ h

0

t2dt+ h2

= |θ − θ̂n|h
√

h

3
+ 1 a.s. (9)

The strong–consistency of ρ
θ̂n

in L (H) directly follows from Theorem 1 and equation (9).

�

Remark 3 From [Kleptsyna and Breton, 2002, Proposition 2.3] (see also Theorem 2 below), the MLE

θ̂T of θ satisfies

E

{(
θ − θ̂T

)2}
= O

(
2θ

T

)
, T → ∞. (10)
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In addition, from equation (9), considering T = nh, h > 0,

E
{
‖ρθ − ρ

θ̂n
‖2L(H)

}
≤ E

{
|θ − θ̂n|2

}
h2

(
h

3
+ 1

)
. (11)

Equations (10)–(11) lead to

E
{
‖ρθ − ρ

θ̂n
‖2L(H)

}
≤ G(θ, θ̂n, h),

with

G(θ, θ̂n, h) = O
(
2θ

n

)
, n → ∞.

Therefore, the functional parameter estimator ρ
θ̂n

is
√
n–consistent.

2.3 Consistency of the plug–in ARH(1) predictor

Let us consider the plug–in ARH(1) predictor X̂n, constructed from the MLE ρ
θ̂n

of ρθ in Proposition

1, given by

X̂n (t) = ρ
θ̂n

(Xn−1) (t) = e−θ̂ntXn−1 (h) , 0 ≤ t ≤ h, n ∈ Z. (12)

Corollary 1 below provides the consistency of X̂n, given in equation (12), from Proposition 1 by

applying the following lemma and theorem.

Lemma 3 Let {Zn, n ∈ Z} be a sequence of random variables such that

Zn ∼ N
(
0,

1

2θ

)
, θ > 0,

and let {Yn, n ∈ Z} be another sequence of random variables such that

√
ln (n)Yn −→p 0, n → ∞.

Then,

Yn|Zn| −→p 0, n → ∞,

where, as usual, −→p indicates convergence in probability.

The proof of this lemma can be found in the Supplementary Material 5.
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Theorem 2 Let θ̂T be the MLE of θ defined in equation (7), with θ > 0. Hence,

E

{(
θ − θ̂T

)2}
= O

(
2θ

T

)
, T → ∞. (13)

In particular,

lim
T→∞

E

{(
θ − θ̂T

)2}
= 0.

The proof of this result is given in [Kleptsyna and Breton, 2002, Proposition 2.3].

Corollary 1 Let H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
be the Hilbert space introduced above. Then, the plug–in

ARH(1) predictor (12) of an O.U. process is consistent in H; i.e.,

∥∥∥
(
ρθ − ρ

θ̂n

)
(Xn−1)

∥∥∥
H

−→p 0.

Proof. By definition,

∥∥∥
(
ρθ − ρ

θ̂n

)
(Xn−1)

∥∥∥
H

= |Xn−1 (h)|
√∫ h

0

(
e−θt − e−θ̂nt

)2
dt+

(
e−θh − e−θ̂nh

)2
. (14)

From equations (8)–(9) and (14), we then obtain, for n sufficiently large,

∥∥∥
(
ρθ − ρ

θ̂n

)
(Xn−1)

∥∥∥
H

≤ |Xn−1 (h)|
∣∣∣θ − θ̂n

∣∣∣ h
√

h

3
+ 1 a.s. (15)

Let us set

{Yn, n ∈ Z} =

{
|θ − θ̂n|h

√
h

3
+ 1, n ∈ Z

}
, {Zn, n ∈ Z} = {Xn−1 (h) , n ∈ Z} ,

with Zn ∼ N
(
0, 1

2θ

)
, for every n ∈ Z. From Theorem 1,

Yn −→ 0 a.s., n → ∞.

Hence, to apply Lemma 3, we need to prove that

√
ln (n)Yn −→p 0, n → ∞.
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From the Chebyshev’s inequality and Theorem 2, we get, for all ε > 0,

lim
n→0

P
(
|θ − θ̂n|

√
ln (n)h

√
h

3
+ 1 ≥ ε

)
≤

h2
(
h
3 + 1

)
ln (n) E

{∣∣∣θ − θ̂n

∣∣∣
2
}

ε2
= 0.

Therefore, from Lemma 3, we obtain the convergence in probability of
∥∥∥
(
ρθ − ρ

θ̂n

)
(Xn−1)

∥∥∥
H

to

zero.

�

2.4 Prediction of O.U. processes in B = C ([0, h])

As before, let B be now the Banach space of continuous functions, whose support is the interval

[0, h], with the supremum norm, denoted as C ([0, h]) . The following lemma states that ‖ρkθ‖L(B) ≤ 1, for

θ > 0, and for every k ≥ 1, with L (B) being the space of bounded linear operators on the Banach space

B = C ([0, h]) , and ρθ being introduced in equation (3). Consequently, from [Bosq, 2000, Theorem 6.1],

X = {Xn, n ∈ Z} , constructed in (1) from the O.U. process, defines the unique stationary solution to

equation (2), in the Banach space B = C ([0, h]) , admitting a MAB(∞) representation.

Lemma 4 Let ρθ introduced in (3), defined on B = C ([0, h]) . Then, for k ≥ 1, ‖ρkθ‖L(B) ≤ 1, with

θ > 0.

Proof.

From

ρkθ(x)(t) = e−θte−θ(k−1)hx(h),

for each k ≥ 1 and θ > 0, we have

∥∥ρkθ
∥∥
L(B)

= sup
x∈B

{‖ρkθ (x) ‖B
‖x‖B

}
= sup

x∈B





sup
0≤t≤h

{∣∣∣e−θte−θ(k−1)hx(h)
∣∣∣
}

sup
0≤t≤h

|x(t)|





= sup
x∈B





|x(h)| e−θ(k−1)h sup
0≤t≤h

e−θt

sup
0≤t≤h

|x(t)|





≤ sup
x∈B





|x(h)| sup
0≤t≤h

e−θt

|x(h)|





= sup
0≤t≤h

e−θt = 1. (16)

�
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We now check the strong consistency of the MLE ρ
θ̂n

of ρθ in L(B). From equation (16),

‖ρθ − ρ
θ̂n
‖L(B) ≤ sup

0≤t≤h

{∣∣∣e−θt − e−θ̂nt
∣∣∣
}

a.s.

From Lemma 2, for n sufficiently large, we then have

‖ρθ − ρ
θ̂n
‖L(B) ≤ h

∣∣∣θ − θ̂n

∣∣∣ a.s. (17)

Theorem 1 then leads to the desired result on strong consistency of the estimator ρ
θ̂n

of ρθ in L(B).

Furthermore, from Theorem 2 , in a similar way to Remark 3, the
√
n–consistency of ρ

θ̂n
in L (B) also

follows from equations (13) and (17).

Similarly to Corollary 1, in the following result, the consistency, in the Banach space

B = C([0, h]), of the plug–in predictor (12) is obtained.

Corollary 2 The ARB(1) plug–in predictor (12) of a zero–mean O.U. process is consistent in

B = C([0, h]); i.e., as n → ∞,
∥∥∥
(
ρθ − ρ

θ̂n

)
(Xn−1)

∥∥∥
B
−→p 0.

Proof. From Lemma 2, for n sufficiently large, and for each h > 0,

‖
(
ρθ − ρ

θ̂n

)
(Xn−1) ‖B = sup

0≤t≤h

{∣∣∣e−θt − e−θ̂nt
∣∣∣ |Xn−1 (h)|

}
≤ h|θ − θ̂n||Xn−1 (h) | a.s. (18)

As derived in the proof of Corollary 1, from Theorem 2, the random sequence

{Yn, n ∈ Z} =
{
h|θ − θ̂n|, n ∈ Z

}
is such that

√
ln (n)Yn ≤

√
h

3
+ 1
√
ln (n)Yn −→p 0, n → ∞.

Moreover, {Zn, n ∈ Z} = {Xn−1 (h) , n ∈ Z} is such that Zn ∼ N
(
0, 1

2θ

)
. Lemma 3 then leads, as

n → ∞, to the desired convergence result from equation (18):

‖
(
ρθ − ρ

θ̂n

)
(Xn−1) ‖B ≤ Yn|Zn| −→p 0.

�

3 Simulations
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In this section, a simulation study is undertaken to illustrate the asymptotic results presented in this

paper about the MLE θ̂n of θ, and the consistency of the ML functional parameter estimators of the

autocorrelation operator, and the associated plug–in predictors, in the ARH(1) and ARB(1) frameworks.

3.1 Estimation of the scale parameter θ

On the simulation of the sample–paths of an O.U. process, an extension of the Euler’s method,

the so–called Euler–Murayama’s method (see Kloeden and Platen [1992]) is applied, from the Langevin

stochastic differential equation satisfied by the O.U. process {ξt, t ∈ [0, T ]}

dξt = −θξt + dWt, θ > 0, t ∈ [0, T ] , ξ0 = x0. (19)

Thus, let 0 = t0 < t1 < · · · < tn = T be a partition of the real interval [0, T ] . Then, (19) can be

discretized as

ξ̂i+1 = ξ̂i − θξ̂i +∆Wi, ξ̂0 = ξ0 = 0, (20)

where {∆Wi, i = 0, . . . , n− 1} are i.i.d. Wiener increments; i.e.,

∆Wi ∼ N (0,∆t) =
√
∆tN (0, 1) , i = 0, . . . , n− 1.

In the following, we take ∆t = 0.02 as discretization step size, considering N = 1000 simulations of the

O.U. process. In particular, Figure 1 shows some realizations of the discrete version of the solution to

(19) generated from (20).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Sample paths of an O.U. process {ξt, 0 ≤ t ≤ T} generated with T = 5, ∆t = 0.02, θ = 5 and ξ̂0 = 0.

Let us first illustrate the asymptotic normal distribution of θ̂T ; i.e., for T sufficiently large, we can
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consider θ̂T ∼ N
(
θ, 2θ

T

)
(see Theorem 3 in the Supplementary Material 5). From equation (7), we take

θ̂T =

−
∫ T

0

ξtdξt

∫ T

0

ξ2t dt

,

(see also Supplementary material 5), to compute the following approximation of the MLE θ̂T of θ, for

each one of the N = 1000 simulations performed, and for each one of the six values of parameter θ

considered:

θ̂T ≃
−

n−1∑

i=0

ξ̂ti,s(θ)
(
ξ̂ti+1,s(θ)− ξ̂ti,s(θ)

)

n−1∑

i=0

ξ̂2ti,s(θ)∆t

, t0 = 0, tn = T, ∆t = 0.02, s = 1, . . . , N, (21)

where ξ̂ti,s(θ) represents the s–th discrete generation of the O.U. process, evaluated at time ti, with

covariance scale parameter θ, for

θ = [0.1, 0.4, 0.7, 1, 2, 5] .

Table 1 displays the empirical probabilities of the error θ̂T − θ to be within the band ±3
√

2θ
T
, from N =

1000 discrete simulations of the O.U. process, considering different sample sizes

{Tl = 12000 + 1000(l− 1), l = 1, . . . , 7}. Figure 2 displays the cases θ = 0.1 (at the top) and θ = 5 (at

the bottom). It can be observed that, for each one of the sample sizes considered, {Tl = 12000 + 1000(l− 1), l = 1, . . . , 7},

approximately a 99% of the realizations of θ̂T −θ lie within the band ±3
√

2θ
T
, which supports the asymp-

totic Gaussian distribution.

Table 1: Empirical probabilities of the error of the MLE of θ to lie within the band ±3σ = ±3
√

2θ

T
, for different

sample sizes T, and values of parameter θ.

Parameter θ

T 0.1 0.4 0.7 1 2 5

12000 0.998 1 0.998 0.998 1 0.998

13000 0.997 0.998 0.998 1 0.995 1

14000 0.998 0.997 1 0.997 1 0.998

15000 0.998 0.997 0.998 0.998 1 0.998

16000 0.997 0.995 0.997 0.998 1 1

17000 0.993 0.998 1 0.997 0.995 1

18000 0.997 0.997 0.995 1 1 0.998
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Figure 2: The values of θ̂T − θ, based on N = 1000 simulations of the O.U. process over the interval [0, T ],

for {Tl = 12000 + (l − 1)1000, l = 1, . . . , 7} , are represented against the confidence bands given by +3σ = 3
√

2θ

T

(upper red dotted line) and −3σ = −3
√

2θ

T
(lower green dotted line), for values θ = 0.1 (at the top) and θ = 5

(at the bottom).

Regarding asymptotic efficiency stated in Theorem 2, from N = 1000 simulations of the O.U. pro-

cess over the interval [0, T ], for {Tl = 50 + 250(l− 1), l = 1, . . . , 25} , the corresponding empirical mean

square errors

EMSE(N, T, θ) =
1

N

N∑

s=1

(
θ − θ̂T (ωs)

)2
, N = 1000, θ = [0.1, 0.4, 0.7, 1] ,

are displayed in Figure 3. Here, θ̂T (ωs), with ωs ∈ Ω, s = 1, . . . , N, represent the respective approximated

values (21) of the MLE of θ, computed from ξti,s, s = 1, . . . , N, ti ∈ [0, T ], i = 1, . . . , n. It can be observed,

from the results displayed in Figure 3, that Theorem 2 holds for T sufficiently large.
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Figure 3: EMSE(N,T, θ) based on N = 1000 generations of O.U. process, for different sample sizes and values

θ = 0.1 (blue star line), θ = 0.4 (black circles line), θ = 0.7 (green plus line), θ = 1 (magenta cross line) and

θ = 2 (red triangle line).

3.2 Consistency of ρ
θ̂T

= ρ
θ̂n

in L(H) and L(B)

The strong–consistency of ρ
θ̂n

in L(H) is derived in Proposition 1 from the following almost surely

upper bound

‖ρθ − ρ
θ̂n
‖L(H) ≤ |θ − θ̂n|h

√
h

3
+ 1 a.s. (22)

Here, from N = 1000 simulations of the O.U. process on the interval [0, T ], with sample sizes

T = nh = n = {200000+ (l − 1)200000, l = 1, . . . , 5} , the corresponding values of θ̂T − θ = θ̂n − θ

are computed, considering the cases θ = [0.4, 0.7, 1] . Table 2 shows the empirical probability of θ̂T − θ

to lie within the band ±3
√

2θ
T
, for each one of sample sizes and cases θ = [0.4, 0.7, 1] regarded. It can be

observed that for the sample sizes studied, in the case of θ = 1, the empirical probabilities are equal to

one. Thus, the almost surely convergence to zero of the upper bound (22) holds, with an approximated

convergence rate of
√
T =

√
n. Note that, for the other two cases, θ = 0.4 and θ = 0.7, the empirical

probabilities are also very close to one (see also Table 1 for smaller sample sizes, where we can also

observe the empirical probabilities very close to one for the same band). In particular, Figure 4 displays

the cases θ = 0.4 (at the top) and θ = 1 (at the bottom).
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Table 2: Empirical probability of θ̂T − θ to be within the band ±3σ = ±3
√

2θ

T
, from N = 1000 simulations of

an O.U. process over the interval [0, T ], with {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , considering the cases

θ = [0.4, 0.7, 1].

Parameter θ

T 0.4 0.7 1

200000 1 1 1

400000 1 1 1

600000 0.999 1 1

800000 0.999 0.999 1

1000000 0.998 1 1

Figure 4: The values of θ̂T −θ are represented, corresponding to N = 1000 simulations of an O.U. process over

the interval [0, T ], with {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , considering the cases θ = 0.4 (at the top),

and θ = 1 (at the bottom). The upper red dotted line is +3
√

2θ

T
and the lower green dotted line is −3

√
2θ

T
.
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It can be observed from Table 2 that a better performance is obtained for the largest values of θ,

which corresponds to the weakest dependent case. Furthermore, from the upper bound in (17), the

strong consistency of ρ
θ̂n

in L(B), with, as before, B = C([0, h]), is also illustrated from the results

displayed in Table 2 and Figure 4.

3.3 Consistency of the ARH(1) and ARB(1) plug–in predictors for the O.U. process

Let us now consider the derived upper bounds in (15) and (18) in Corollaries 1–2, for the ARH(1)

and ARB(1) predictors, respectively. From the generation of N = 1000 discrete realizations of an O.U.

process over the interval [0, T ], for {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , the upper bounds (15)

and (18) are evaluated, for the cases θ = [0.4, 0.7, 1] . The following empirical probabilities for ǫ = 0.008,

are reflected in Table 3

P̂H(N, T, θ) = 1− P̂
(
|Xn−1 (h) ||θ − θ̂n|h

√
h

3
+ 1 > ǫ

)
, (23)

P̂B(N, T, θ) = 1− P̂
(
|Xn−1 (h) ||θ − θ̂n|h > ǫ

)
, (24)

with N = 1000, {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} and θ = [0.4, 0.7, 1], for the Hilbert–valued

and Banach–valued (see (15) and (18)) frameworks (see also Figure 5). It can be observed that the

empirical probabilities are equal to one in both frameworks for the largest sample sizes, in any of the

cases considered.

Table 3: Empirical probabilities (23)–(24), based on N = 1000 simulations of the O.U. process over the interval
[0, T ], for {Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , considering the cases θ = [0.4, 0.7, 1] , and ǫ = 0.008.

Parameter θ

Hilbert-valued case Banach-valued case

T 0.4 0.7 1 0.4 0.7 1

200000 0.980 0.980 0.980 0.987 0.991 0.987

400000 0.995 0.995 0.995 0.997 0.998 0.9977

600000 0.999 0.998 0.999 0.999 0.999 1

800000 1 0.999 0.999 1 1 1

1000000 1 1 1 1 1 1
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Figure 5: The values of |Xn−1 (h) ||θ − θ̂n|h
√

h

3
+ 1 (first and second figure) and |Xn−1 (h) ||θ − θ̂n|h (third

and fourth figure) are represented, based on N = 1000 generations of O.U. process over the interval [0, T ], for

{Tl = 200000 + (l − 1)200000, l = 1, . . . , 5} , against ǫ = 0.008 (red dotted line), considering θ = 0.4 (first and

third figure) and θ = 1 (second and fourth figure).

The strong–consistency of the MLE of θ and of the autocorrelation operator of the O.U. process, in

Banach and Hilbert spaces, has been first illustrated. The almost surely rate of convergence to zero is

shown as well. The numerical results on the consistency of the associated ARH(1) and ARB(1) plug–in

predictors then follow, from the computation of the corresponding empirical probabilities for the derived

upper bounds. Note that the numerical results displayed in Appendix 3 are obtained under generation

of sample sizes ranging from 12000 up to a million of time instants, considering 1000 repetitions for each

one of such sample sizes. In all these simulations performed, the discretization step size considered has

18



been ∆t = 0.02.

4 Final comments

The problem of functional prediction of the O.U. process could be of interest in several applied fields.

For example, in finance, in the context of the Vasicek’s model (see Vasicek [1977]) the results derived

allow to predict the curve representing the interest rate over a temporal interval, in a consistent way.

Note that, in this context, the MLE computed for parameter θ provides a consistent approximation of

the speed reversion, which definitely determines the proposed functional predictor of the interest rate.

Summarizing, this paper addresses the problem of functional prediction of the O.U. process from

ARH(1) and ARB(1) perspectives. Specifically, considering the O.U. process as an ARH(1) and an

ARB(1) process, new results on strong consistency (almost surely convergence to the true parameter

value), in the spaces L(H) and L(B) of the MLE of its autocorrelation operator are derived. Consistency

results (convergence in probability to the true value) of the associated plug–in predictors are obtained

as well. The numerical results shown, in addition, the normality and the asymptotic efficiency of the

MLE of the scale parameter θ of the covariance function of the O.U. process.

5 Supplementary Material

The definition and properties of an O.U. process are given here, as well as the proof of Lemma 1.

5.1 Ornstein–Uhlenbeck process

Let ξ (ω) = {ξt (ω) , t ∈ R} , ω ∈ Ω, be a real–valued sample–path continuous stochastic process

defined on the basic probability space (Ω,A,P) , with index set the real line R. As demonstrated in

Doob [1942], process ξ is an O.U. process if it provides the Gaussian solution to the following stochastic

linear Langevin differential equation:

dξt = θ (µ− ξt) dt+ σdWt, θ, σ > 0, t ∈ R, (25)

where W = {Wt, t ∈ R} is a standard bilateral Wiener process; i.e.,

Wt = W
(1)
t 1R+ (t) +W

(2)
−t 1R− (t) ,

with W
(1)
t and W

(2)
−t being independent standard Wiener processes, and 1R+ and 1R− respectively de-

noting the indicator functions over the positive and negative real line. Applying, in equation (25), the
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method of separation of variables, considering f (ξt, t) = ξte
θt, we obtain

ξt = µ+

∫ t

−∞
σe−θ(t−s)dWs, θ, σ > 0, t ∈ R, (26)

where the integral is understood in the Itô sense (see Ash and Gardner [1975]; Sobczyk [1991] for more

details). Particularizing to ξ = {ξt, t ∈ R
+}, the O.U. process is transformed into

ξt = ξ0e
−θt + µ

(
1− e−θt

)
+

∫ t

0

σe−θ(t−s)dWs, θ, σ > 0, t ∈ R
+. (27)

It is well–known that the solution ξ = {ξt, t ∈ R} to the stochastic differential equation

dξt = µ (ξt, t) dt+
√
D (ξt, t)dWt, t ∈ R,

has marginal probability density function f (x, t) , satisfying the following Fokker–Planck’s scalar equa-

tion (see, for example, Kadanoff [2000]):

∂

∂t
f (x, t) =

−∂

∂x
[µ (x, t) f (x, t)] +

1

2

∂2

∂x2
[D (x, t) f (x, t)] , t ∈ R.

In the case of O.U. process, the stationary solution ( ∂
∂t
f (x, t) = 0), under f (x, x0) = δ (x− x0),

adopts the form

f (x, t) =

√
θ

πσ2
e

−θ(x−µ)2

σ2 , θ, σ > 0, t ∈ R,

which corresponds to the probability density function of a Gaussian distribution with mean µ and

variance σ2

2θ , i.e., which corresponds to the probability density function of a random variable X such that

X ∼ N
(
µ,

σ2

2θ

)
.

From (26), the mean and covariance functions of O.U. process (see, for instance, Doob [1942]; Uhlenbeck and Ornstein

[1930]) can be computed as follows:

µξ(t) = E {ξt} = µ+ σE

{∫ t

−∞
e−θ(t−s)dWs

}
= µ, t ∈ R,

Cξ(t, s) = Cov (ξs, ξt) = E {(ξs − µ) (ξt − µ)} = σ2e−θ(t+s)E

{∫ t

−∞
eθudWu

∫ s

−∞
eθvdWv

}

= σ2e−θ(t+s)

∫ ∞

−∞
e2θu1[−∞,t] (u)1[−∞,s] (u)du = σ2e−θ(t+s)

∫ min{s,t}

−∞
e2θudu

=
σ2

2θ
e−θ(t+s)e2θmin{s,t} =

σ2

2θ
e−θ|t−s|, t, s ∈ R, (28)
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where Cov (X,Y ) denotes the covariance between random variables X and Y . Additionally, from (27),

we obtain the following identities:

E {ξt} = µe−θt + µ
(
1− e−θt

)
= µ, E {ξt|ξ0 = c} = µ+ e−θt (c− µ) , t ∈ R

+,

Cov (ξs, ξt|ξ0 = c) =
σ2

2θ
e−θ|t−s| +

(
c2 − 2cµ+ µ2

)
e−θ(s+t), t, s ∈ R

+,

where c is a constant. In the subsequent development, we will consider µ = 0 and σ = 1.

5.2 Maximum likelihood estimation of the covariance scale parameter θ

The MLE of θ in (28) is given by (see Graczyk and Jakubowski [2006]; [Kutoyants, 2004, p. 63];

[Liptser and Shiraev, 2001, p. 265])

θ̂T =

−
∫ T

0

ξtdξt

∫ T

0

ξ2t dt

=

θ

∫ T

0

ξ2t dt−
∫ T

0

ξtdWt

∫ T

0

ξ2t dt

= θ −

∫ T

0

ξtdWt

∫ T

0

ξ2t dt

, θ, T > 0. (29)

Thus, equation (29) becomes

θ̂T =
1 +

ξ20
T

− ξ2T
T

2
T

∫ T

0

ξ2t dt

, T > 0. (30)

We will assume that T is large enough such that θ̂T > 0 almost surely. It is well–known that the MLE

θ̂T of θ is strongly consistent (see details in [Kleptsyna and Breton, 2002, Proposition 2.2]; [Kutoyants,

2004, p. 63 and p. 117]).

Theorem 3 The following limit in distribution sense holds for the MLE θ̂T of θ, given in equation

(30):

lim
T→∞

√
T
(
θ̂T − θ

)
= lim

T→∞

−
√
T

∫ T

0

ξtdWt

∫ T

0

ξ2t dt

= Z, with Z ∼ N (0, 2θ) .

Results in [Jiang, 2012, Theorem 1.1 and Corollary 1.1] lead to the following almost surely identities

(see also [Bosq, 2000, Theorem 2.10];[Ledoux and Talagrand, 2011, pp. 196–203], in relation to the law
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of the iterated logarithm)

lim sup
T→+∞

θ̂T − θ√
4θ
T
ln (ln (T ))

= 1 a.s.,

− lim inf
T→+∞

θ̂T − θ√
4θ
T
ln (ln (T ))

= 1 a.s.,

|θ − θ̂T | = O
(√

4θ ln (ln (T ))

T

)
a.s.

5.3 Preliminary inequalities and results

In this section we recall some inequalities and well–known convergence results on random variables,

as well as basic deterministic inequalities, that have been applied in the derivation of the main results

displayed above.

Lemma 5 Let X be a zero–mean normal distributed random variable, i.e., X ∼ N
(
0, σ2

)
, with σ > 0.

Then,

P (|X | ≥ x) ≤ e−
x2

2σ2 , x ≥ 0.

Proof. Let X ′ be such that X ′ ∼ N (0, 1) . Then,

P (|X ′| ≥ x) = 2FX′ (−x) =

√
2

π

∫ ∞

x

e−
t2

2 dt, ∀x ≥ 0. (31)

Let us set

g (x) = e−
x2

2 −
√

2

π

∫ ∞

x

e−
t2

2 dt, g (0) = 0, lim
x→∞

g (x) = 0,

g′ (x) = −xe−
x2

2 +

√
2

π
e−

x2

2 = e−
x2

2

(√
2

π
− x

)
.

(32)

Function g is monotone increasing over
(
0,
√

2
π

)
, and g is monotone decreasing over

(√
2
π
,∞
)
.

From equations (31)–(32),

P (|X ′| ≥ x) ≤ e−
x2

2 , x ≥ 0.

Now, consider X ′ = X
σ
, with X ∼ N

(
0, σ2

)
, then,

P (|X | ≥ x) ≤ e−
x2

2σ2 , x ≥ 0.
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5.3.1 Proof of Lemma 1

Proof.

Let us first consider the case k = 1, from

ρθ (x) (t) = e−θtx (h) , ρθ (Xn−1) (t) = e−θt

∫ nh

−∞
e−θ(nh−s)dWs,

εn (t) =

∫ nh+t

nh

e−θ(nh+t−s)dWs,

and

‖ρθ(x)‖2H =

∫ h

0

(ρθ (x) (t))
2
d
(
λ+ δ(h)

)
(t) =

∫ h

0

(ρθ (x) (t))
2
dt+ (ρθ (x) (h))

2
,

we have

‖ρθ‖L(H) = sup
x∈H

{‖ρθ (x) ‖H
‖x‖H

}
= sup

x∈H





√√√√√√√√

(∫ h

0

e−2θtdt+ e−2θh

)
(x (h))

2

∫ h

0

(x (t))
2
dt+ (x (h))

2





. (33)

Furthermore,

‖ρθ‖L(H) = sup
x∈H





√√√√√√√√

(∫ h

0

e−2θtdt+ e−2θh

)
(x (h))

2

∫ h

0

(x (t))
2
dt+ (x (h))

2





≤
√∫ h

0

e−2θtdt+ e−2θh. (34)

Additionally, the function x0 : [0, h] −→ R, given by

x0(t) = χM(t), h ∈ M ⊂ [0, h],

∫

M
dt = 0, (35)

with 1M, denoting the indicator function of set M, belongs to H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, since

x2
0(h) = 1,

∫ h

0

x2
0(t)dt = 0 ‖x0‖2H =

∫ h

0

x2
0(s)ds+ x2

0(h) = 1.
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Thus, by definition of ‖ρθ‖L(H),

‖ρθ(x0)‖H
‖x0‖H

=

√∫ h

0

e−2θtdt+ e−2θh ≤ ‖ρθ‖L(H) (36)

Equations (33)–(36) lead to

‖ρθ‖L(H) =

√∫ h

0

e−2θtdt+ e−2θh =

√
1 + e−2θh (2θ − 1)

2θ
. (37)

We are now going to compute ‖ρkθ‖L(H), for k ≥ 2. Since, for all x ∈ H,

ρkθ(x)(t) = e−θte−θ(k−1)hx(h),

we obtain

‖ρkθ‖L(H) = sup
x∈H





√√√√√√√√

[
e−2θ(k−1)h

∫ h

0

e−2θtdt+ e−2θkh

]
(x(h))

2

∫ h

0

(x(t))
2
dt+ (x(h))

2





.

Considering function x0 defined in equation (35), applying similar arguments to those given in the

computation of ‖ρθ‖L(H), we have

‖ρkθ‖L(H) =

√
e−2θ(k−1)h

1 + e−2θh (2θ − 1)

2θ
= e−θ(k−1)h‖ρθ‖L(H).

Now, from equation (37),

‖ρθ‖L(H) < 1 ⇐⇒ 1− e−2θh < 2θ
(
1− e−2θh

)
⇐⇒ θ >

1

2
.

Furthermore, for θ ∈ (0, 1/2],

‖ρθ‖L(H) =
√
α (θ) <

√
1 + h,

since
√
α (θ) is a monotonically decreasing function on (0, 1/2] , with α (θ) = 1 if θ = 1

2 and

α (θ) → 1 + h, when θ → 0. Hence, if θ(k − 1) ≥ 1,

‖ρkθ‖L(H) = e−θ(k−1)h
√
α (θ) ≤ e−h

√
α (θ) <

√
1 + h

eh
< 1, h > 0,

which implies that ‖ρk0

θ ‖L(H) < 1, when k0 ≥ 1
θ
+ 1.

�
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5.3.2 Proof of Lemma 2

Proof. Let us first assume that x ≥ y > 0.

From the Mean Value Theorem applied over ez, there exists 0 < α < 1 such that

ez+h − ez

h
= ez+αh.

Taking z = −xt and z + h = −yt, we get the following inequalities:

|e−xt − e−yt| = |x− y|te−xt+α(x−y)t = |x− y|text(α−1)e−yαt ≤ |x− y|te−yαt ≤ |x− y|t.

Similar inequalities are obtained for the case y ≥ x > 0, by applying the Mean Value Theorem over

the interval [x, y], instead of [y, x].

�

5.3.3 Proof of Lemma 3

Proof. Considering the indicator function 1·, it holds

Yn|Zn| = Yn|Zn|1{|Zn|<an} + Yn|Zn|1{|Zn|≥an} ≤ Ynan + Yn|Zn|1{|Zn|≥an}, (38)

where {an, n ∈ Z} is a sequence of positive numbers such that the event
{
Yn|Zn|1{|Zn|≥an}, n ∈ Z

}
is

equivalent to {|Zn| ≥ an, n ∈ Z}. From (38) and Lemma 5, if we take an > ε
2 , for all n ∈ Z, we get, for

each ε > 0,

P (Yn|Zn| ≥ ε) ≤ P
(
Ynan ≥ ε

2

)
+ P (|Zn| ≥ an) ≤ P

(
Ynan ≥ ε

2

)
+ e−θa2

n. (39)

For an = c
√
ln (n) > ε

2 , with
1√
θ
< c < +∞,

∑

n∈Z

P (|Zn| ≥ an) ≤
∑

n∈Z

e−θa2
n =

∑

n∈Z

1

nθc2
< +∞,

which implies that

lim
n→∞

P (|Zn| ≥ an) = 0

in equation (39).
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On the other hand, since
√
ln (n)Yn −→p 0, for every ε > 0,

0 = lim
n→∞

P
(√

ln (n)Yn ≥ ε

2

)
= lim

n→∞
P
(
Yn

an
c

≥ ε

2

)
.

Thus, Yn|Zn| −→p 0.

�
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limit theorem in Hilbert spaces. Stochastic Process. Appl. 108 (2003), pp. 229–262. – DOI:

doi.org/10.1016/j.spa.2003.07.004

[Dehling and Sharipov 2005] Dehling, H. ; Sharipov, O. S.: Estimation of mean and covariance

operator for Banach space valued autoregressive processes with dependent innovations. Stat. Inference

Stoch. Process. 8 (2005), pp. 137–149. – DOI: doi.org/10.1007/s11203-003-0382-8

[Doob 1942] Doob, J. L.: The Brownian movement and stochastic equations. Ann. Math. 43 (1942),

pp. 319–337. – URL https://www.jstor.org/stable/pdf/1968873.pdf

[Ferraty and Vieu 2006] Ferraty, F. ; Vieu, P.: Nonparametric functional data analysis: theory and

practice. Springer, 2006. – ISBN 9780387303697

[Glendinning and Fleet 2007] Glendinning, R. ; Fleet, S.: Classifying functional time series. Signal

Process. 87 (2007), pp. 79–100. – DOI: doi.org/10.1016/j.sigpro.2006.04.006

[Graczyk and Jakubowski 2006] Graczyk, P. ; Jakubowski, T.: Analysis of Ornstein-Uhlenbeck and
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sus autorégressif Banach. C. R. Acad. Sci. Paris Sér. I 335 (2002), pp. 767–772. – DOI:

doi.org/10.1016/S1631-073X(02)02544-X

[Laukaitis 2008] Laukaitis, A.: Functional data analysis for cash flow and transactions intensity

continuous-time prediction using Hilbert-valued autoregressive processes. European J. Oper. Res. 185

(2008), pp. 1607–1614. – DOI: doi.org/10.1016/j.ejor.2006.08.030

[Laukaitis and Vasilecas 2009] Laukaitis, A. ; Vasilecas, O.: Estimation of the autore-

gressive operator by wavelet packets. Statist. Probab. Lett. 79 (2009), pp. 38–43. – DOI:

doi.org/10.1016/j.spl.2008.07.011

28

doi.org/10.1016/S0167-7152(01)00151-1
doi.org/10.1016/j.jmaa.2016.12.037
doi.org/10.1239/jap/1354716652
doi.org/10.1016/j.jmva.2008.03.001
doi.org/10.1023/A:1021220818545
doi.org/10.1016/S1631-073X(02)02544-X
doi.org/10.1016/j.ejor.2006.08.030
doi.org/10.1016/j.spl.2008.07.011


[Ledoux and Talagrand 2011] Ledoux, M. ; Talagrand, M.: Probability in Banach spaces. Springer-

Verlag, Berlin, 2011. – ISBN 9783642202124

[Liptser and Shiraev 2001] Liptser, R. S. ; Shiraev, A. N.: Statistics of Random Processes I, II.

Springer, New York, 2001. – ISBN 9783662100288

[Marion and Pumo 2004] Marion, J. M. ; Pumo, B.: Comparison of ARH(1) and

ARHD(1) models on physiological data. Ann. I.S.U.P. 48 (2004), pp. 29–38. – URL

https://www.researchgate.net/publication/288849889_Comparaison_des_modeles_ARH1_et_ARHD1_sur_des_donnees_physiologiques

[Mas 2002] Mas, A.: Weak convergence for the covariance operators of a Hilbertian linear process.

Stochastic Process. Appl. 99 (2002), pp. 117–135. – DOI: doi.org/10.1016/S0304-4149(02)00087-X

[Mas 2004] Mas, A.: Consistance du prédicteur dans le modéle ARH(1): le cas compact. Ann.
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ARB(1). Sieve estimator of the operator in ARB(1) process. C. R. Acad. Sci. Paris Sér. I 336 (2003),

pp. 605–610. – DOI: doi.org/10.1016/S1631-073X(03)00061-X

[Ramsay and Silverman 2005] Ramsay, J. O. ; Silverman, B. W.: Functional data analysis, 2nd ed.

Springer, New York, 2005. – ISBN 978038740080

[Ruiz-Medina 2012] Ruiz-Medina, M. D.: Spatial functional prediction from spatial autoregressive

Hilbertian processes. Environmetrics 23 (2012), pp. 119–128. – DOI: doi.org/10.1002/env.1143

[Ruiz-Medina and Salmerón 2009] Ruiz-Medina, M. D. ; Salmerón, R.: Functional maximum-

likelihood estimation of ARH(p) models. Stoch. Environ. Res. Risk. Assess. 24 (2009), pp. 131–146.

– DOI: doi.org/10.1007/s00477-009-0306-2

[Sobczyk 1991] Sobczyk, K.: Stochastic Differential Equations, with Applications to Physics and

Engineering. Kluwer Academic Publishers, Dordrecht, 1991. – ISBN 9789401137126

[Turbillon et al. 2008] Turbillon, C. ; Bosq, D. ; Marion, J. M. ; Pumo, B.: Estimation du
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