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1. Introduction

This paper derives new results in the context of linear processes in function spaces. An extensive literature
has been developed in this context, in the last few decades (see, for example, Bosq (2000); Ferraty and Vieu
(2006); Ramsay and Silverman (2005), among others). In particular, the problem of functional prediction of
linear processes in Hilbert and Banach spaces has been widely addressed. We refer to the reader to the papers
by: Bensmain and Mourid (2003); Bosq (1996); Bosq (2002); Bosq (2004); Bosq (2007); Dedecker and Mer-
levede (2003); Dehling and Sharipov (2005); Glendinning and Fleet (2007); Guillas (2000); Guillas (2001);
Kargin and Onatski (2008); Labbas and Mourid (2003); Marion and Pumo (2004); Mas (2002); Mas (2004);
Mas (2007); Mas and Menneteau (2003); Mas and Pumo (2007); Menneteau (2005); Mourid (2002); Mourid
(2004); Mokhtari and Mourid (2002); Pumo (1998); Rachedi (2004); Rachedi (2005); Rachedi and Mourid
(2003); Ruiz-Medina (2012); Turbillon, Marion and Pumo (2007); Turbillon et. al (2008), and the refer-
ences therein. In the above-mentioned papers, different projection methodologies have been adopted in the
derivation of the main asymptotic properties of the formulated functional parameter estimators and predict-
ors. Particularly, Bosq (2000) and Bosq and Blanke (2007) apply Functional Principal Component Analysis;
Antoniadis, Paparoditis and Sapatinas (2006) and Antoniadis and Sapatinas (2003) consider wavelet bases;
Laukaitis, Vasilecas and Laukaitis (2009) propose wavelet estimation methods. Applications of these func-
tional estimation results can be found in the papers by: Antoniadis and Sapatinas (2003); Damon and Guillas
(2002); Hormann and Kokoszka (2011); Laukaitis (2008); Ruiz-Medina and Salmerón (2009), among others.

We pay attention here to the problem of functional prediction of the Ornstein-Uhlenbeck (O.U.) process
(see, for example, Uhlenbeck and Ornstein (1930), and Wang and Uhlenbeck (1945), for its introduction
and properties). See also Doob (1942) for the classical definition of O.U. process from the Langevin (lin-
ear) stochastic differential equation. We can find in Kutoyants (2004) and Liptser and Shiraev (2001) an
explicit expression of the maximum likelihood estimator (MLE) of the scale parameter θ, characterizing its
covariance function. Its strong consistency is proved, for instance, in Kleptsyna and Le Breton (2002). We
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formulate here the O.U. process as an Autoregressive Hilbertian process of order one (ARH(1) process), and
as an Autoregressive Banach -valued process of order one (ARB(1) process). Consistency of the MLE of θ is
applied to prove consistency of the corresponding MLE of the autocorrelation operator of the O.U. process.
We adopt the methodology applied in Bosq (1991), since our interest relies on forecasting the values of the
O.U. process over an entire time interval. Specifically, considering the O.U. process {ξt}t∈R , on the basic
probability space (Ω,A, P ), we can define

Xn(t) = ξnh+t, 0 ≤ t ≤ h, n ∈ Z, (1)

satisfying

Xn (t) = ξnh+t =
∫ nh+t

−∞
e−θ(nh+t−s)dWs = ρθ (Xn−1) (t) + εn (t) , n ∈ Z, (2)

with

ρθ (x) (t) = e−θtx (h) , ρθ (Xn−1) (t) = e−θt
∫ nh

−∞
e−θ(nh−s)dWs, εn (t) =

∫ nh+t

nh

e−θ(nh+t−s)dWs,

(3)
for 0 ≤ t ≤ h. Thus, X = (Xn, n ∈ Z) satisfies the ARH(1) equation (2) (see also equation (5) below
for its general definition). The real separable Hilbert space H is given by H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
,

where β[0,h] is the Borel σ-algebra generated by the subintervals in [0, h] , λ is the Lebesgue measure, and
δ(h)(s) = δ (s− h) is the Dirac measure at point h. The associated norm

‖f‖H=L2([0,h],β[0,h],λ+δ(h)) =

√∫ h

0

f2(t)dt+ f2(h)

establishes the equivalent classes of functions given by the relationship f ∼λ+δ(h) g if and only if(
λ+ δ(h)

)
({t : f (t) 6= g (t)}) = 0, with

(
λ+ δ(h)

)
({t : f (t) 6= g (t)}) = 0⇔ λ ({t : f (t) 6= g (t)}) = 0 and f (h) = g (h) , (4)

where, as before, δ(h) is the Dirac measure. We will prove, in Lemma 1 below, that X = (Xn, n ∈ Z),
constructed in (1) from the O.U. process, satisfying equations (2)–(3), is the unique stationary solution to
equation (2), in the spaceH = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
, admitting a MAH(∞) representation. Similarly,

in Lemma 4 below, we will prove that X = (Xn, n ∈ Z), constructed in (1) from the O.U. process, satisfy-
ing equations (2)–(3), is the unique stationary solution to equation (2), admitting a MAB(∞) representation,
in the space B = C ([0, h]) , the Banach space of continuous functions, whose support is the interval [0, h] ,
with the supremum norm.

The main results of this paper provide the almost surely convergence to ρθ of the MLE ρθ̂ of ρθ, in the
norm of L(H), the space of bounded linear operators in the Hilbert space H (respectively, in the norm of
L(B), the space of bounded linear operators in the Banach space B). The convergence in probability of
the associated plug-in ARH(1) and ARB(1) predictors, i.e., the convergence in probability of ρθ̂(Xn−1) to
ρθ(Xn−1) in H and B, respectively, is proved as well.

The outline of this paper is as follows. In Section 2, the main results of this paper are obtained. Specific-
ally, Section 2.1 provides the definition of O.U. process as an ARH(1) process. Strong consistency in L(H)
of the estimator of the autocorrelation operator is derived in Section 2.2. Consistency in H of the associated
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plug-in ARH(1) predictor is then established in Section 2.3. The corresponding results in Banach spaces are
given in Section 2.4. For illustration purposes, a simulation study is undertaken in Section 3. Final comments
can be found in Section 4. (The basic preliminary elements applied in the proof of the main results of this
paper and the proof of Lemma 1 can be found in the supplementary material).

2. Prediction of O.U. process in Hilbert and Banach spaces

In this section, we consider H to be a real separable Hilbert space. Recall that a zero-mean ARH(1) process
X = (Xn, n ∈ Z), on the basic probability space (Ω,A, P ), satisfies (see Bosq (2000))

Xn = ρ (Xn−1) + εn, n ∈ Z, (5)

where ρ denotes the autocorrelation operator of process X. Here, ε = (εn, n ∈ Z) is assumed to be a
strong-white noise, i.e., ε is a Hilbert-valued zero-mean stationary process, with independent and identically
distributed components in time, and with σ2 = E‖εn‖2H <∞, for all n ∈ Z.

2.1. O.U. process as ARH(1) process

As commented in the Introduction, equations (1)–(3) provide the definition of O.U. process as an ARH(1)
process, with H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
. The norm in the space H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
of

ρθ(x), with ρθ introduced in (3) and x ∈ H, is given by

‖ρθ(x)‖2H =
∫ h

0

|ρθ (x) (t) |2d
(
λ+ δ(h)

)
(t) =

∫ h

0

|ρθ (x) (t) |2dt+ |ρθ (x) (h) |2, (6)

for each h strictly positive. The following lemma provides, for each k ≥ 1, the exact value of the norm of
ρkθ , in the space of bounded linear operators on L2

(
[0, h] , β[0,h], λ+ δ(h)

)
. As a direct consequence, the

existence of k0 such that ‖ρkθ‖L(H) < 1, for k ≥ k0, is also derived for θ > 0.

Lemma 1 Let us consider, for n ∈ Z, Xn satisfying equations (1)–(3). For each k ≥ 1, the norm of ρkθ is
given by

‖ρkθ‖L(H) =

√
e−2θ(k−1)h

1 + e−2θh (2θ − 1)
2θ

= e−θ(k−1)h‖ρθ‖L(H). (7)

Furthermore, for k ≥ k0 =
[

1
θ + 1

]+
,

‖ρkθ‖L(H) < 1, (8)

where [t]+ denotes the closest upper integer of t, for every t ∈ R+.

The proof of this lemma can be found in the supplementary material.

Remark 1 From equation (8), applying Theorem 3.1. in Bosq (2000), p. 74, Lemma 1 implies that X =
(Xn, n ∈ Z), constructed in (1) from O.U. process, defines the unique stationary solution to equation (2) in
the space H = L2

(
[0, h] , β[0,h], λ+ δ(h)

)
, admitting the MAH(∞) representation

Xn =
+∞∑

k=0

ρkθ (εn−k) , n ∈ Z, ρθ ∈ L (H) . (9)

Remark 2 Note that, for all x ∈ H, and k ≥ 2, ‖ρkθ‖L(H) ≤
[
‖ρθ‖L(H)

]k
.
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2.2. Functional parameter estimation and consistency

We now prove strong consistency of the estimator ρθ̂n
of operator ρθ in L(H), with, as before,

H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
, and θ̂n denoting the MLE of θ, based on the observation of O.U. pro-

cess on the interval [0, T ], with T = nh. Note that, from equation (3), for all x ∈ H, and for a given sample
size n, ρθ̂n

(x) = e−θ̂ntx (h) , where the MLE of θ is given, for T = nh, by

θ̂T =
1 + ξ20

T −
ξ2T
T

2
T

∫ T
0
ξ2t dt

, T > 0, (10)

with ξt, t ∈ [0, T ], being the observed values of the O.U. process over the interval [0, T ]. Thus, ρθ̂n
is

introduced in an abstract way, since it can only be explicitly computed, for each particular function x ∈ H
considered. However, the norm ‖ρθ − ρθ̂n

‖L(H) is explicitly computed in equation (13) below.
The following results will be applied in the proof of Proposition 1.

Lemma 2 If t ∈ [0,+∞), it holds that |e−ut − e−vt| ≤ |u− v|t, for any u, v ≥ 0.

The proof of this lemma is given in the supplementary material.

Theorem 1 (see Kleptsyna and Le Breton (2002), Proposition 2.2, p. 4, and Kutoyants (2004), p. 63 and p.
117). The MLE of θ defined in equation (10) is strongly consistent, i.e.,

lim
T→∞

θ̂T = θ almost surely. (11)

The proof follows from Ibragimov-Khasminskii’s Theorem.

Proposition 1 Let H be the space L2
(
[0, h] , β[0,h], λ+ δ(h)

)
. Then, the estimator ρθ̂n

of operator ρθ,

based on the MLE θ̂n of θ, is strongly consistent in L (H) , i.e.,

‖ρθ − ρθ̂n
‖L(H) →a.s. 0. (12)

Proof. The following straightforward almost surely identities are obtained:

‖ρθ − ρθ̂n
‖L(H) = sup

x∈H




‖
(
ρθ − ρθ̂n

)
(x) ‖H

‖x‖H





= sup
x∈H





√√√√√√√√

∫ h

0

|
(
ρθ − ρθ̂n

)
(x) (t) |2d

(
λ+ δ(h)

)
(t)

∫ h

0

|x (t) |2d
(
λ+ δ(h)

)
(t)





= sup
x∈H





√√√√√√√√
x2 (h)

∫ h

0

(
e−θt − e−θ̂nt

)2

dt+
(
e−θh − e−θ̂nh

)2

∫ h

0

x2 (t) dt+ x2 (h)
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=

√∫ h

0

(
e−θt − e−θ̂nt

)2

dt+
(
e−θh − e−θ̂nh

)2

, (13)

where the last identity is obtained in a similar way to equation (7) in Lemma 1 (see also equations (26)–(30)
in the supplementary material).

From Lemma 2 and equation (13), for n sufficiently large, we have

‖ρθ − ρθ̂n
‖L(H) ≤

√∫ h

0

t2|θ − θ̂n|2dt+ h2|θ − θ̂n|2 = |θ − θ̂n|
√∫ h

0

t2dt+ h2

= |θ − θ̂n|h
√
h

3
+ 1 almost surely. (14)

The strong-consistency of ρθ̂n
in L (H) directly follows from Theorem 1 and equation (14).

�

Remark 3 From Proposition 2.3(i) in Kleptsyna and Le Breton (2002), p. 5 (see also Theorem 2 below), the
MLE θ̂T of θ satisfies

E

[(
θ − θ̂T

)2
]

= O
(

2θ
T

)
, T →∞. (15)

In addition, from equation (14), considering T = nh, h > 0,

E
[
‖ρθ − ρθ̂n

‖2L(H)

]
≤ E

[
|θ − θ̂n|2

]
h2

(
h

3
+ 1
)
. (16)

Equations (15) and (16) lead to

E
[
‖ρθ − ρθ̂n

‖2L(H)

]
≤ G(θ, θ̂n, h),

with G(θ, θ̂n, h) = O
(

2θ
n

)
, n → ∞. Therefore, the functional parameter estimator ρθ̂n

of ρθ is
√
n-

consistent.

2.3. Consistency of the plug-in ARH(1) predictor

Let us consider the plug-in ARH(1) predictor X̂n, constructed from the MLE ρθ̂n
of ρθ in Proposition 1,

given by

X̂n (t) = ρθ̂n
(Xn−1) (t) = e−θ̂ntXn−1 (h) , 0 ≤ t ≤ h, n ∈ Z. (17)

Corollary 1 below provides the consistency of X̂n, given in equation (17), from Proposition 1 by applying
the following lemma and theorem.

Lemma 3 Let {Zn}n∈Z be a sequence of random variables such that Zn ∼ N
(
0, 1

2θ

)
, with θ > 0,

and let {Yn}n∈Z be another sequence of random variables such that
√
ln (n)Yn →p 0, n → ∞. Then,

Yn|Zn| →p 0, n→∞, where, as usual,→p indicates convergence in probability.

The proof of this lemma can be found in the supplementary material.
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Theorem 2 Let θ̂T be the MLE of θ defined in equation (10), with θ > 0. Hence,

E

[(
θ − θ̂T

)2
]

= O
(

2θ
T

)
, T →∞. (18)

In particular,

lim
T→∞

E

[(
θ − θ̂T

)2
]

= 0. (19)

The proof of this result is given in in Proposition 2.3(i) in Kleptsyna and Le Breton (2002), p. 5.

Corollary 1 Let H = L2
(
[0, h] , β[0,h], λ+ δ(h)

)
be the Hilbert space introduced above. Then, the plug-in

ARH(1) predictor (17) of O.U. process is consistent in H, i.e.,

‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖H →p 0. (20)

Proof. By definition,

‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖H = |Xn−1 (h) |

√∫ h

0

(
e−θt − e−θ̂nt

)2

dt+
(
e−θh − e−θ̂nh

)2

. (21)

From equations (13)–(14) and (21), we then obtain, for n sufficiently large,

‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖H ≤ |Xn−1 (h) ||θ − θ̂n|h

√
h

3
+ 1 a.s. (22)

Let us set {Yn}n∈Z =
{
|θ − θ̂n|h

√
h
3 + 1

}

n∈Z
and {Zn}n∈Z = {Xn−1 (h)}n∈Z , with

Xn−1 ∼ N
(
0, 1

2θ

)
, for every n ∈ Z. From Theorem 1, Yn →a.s. 0, n → ∞. Hence, to apply Lemma

3, we need to prove that √
ln (n)Yn →p 0, n→∞. (23)

From Chebyshev’s inequality and Theorem 2, we get, for all ε > 0,

P
(
|θ − θ̂n|

√
ln (n)h

√
h

3
+ 1 ≥ ε

)
≤

h2
(
h
3 + 1

)
ln (n)E

[
|θ − θ̂n|2

]

ε2
→n→+∞ 0. (24)

Therefore, from Lemma 3, we obtain the convergence in probability of ‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖H to zero.

2.4. Prediction of O.U. process inB = C ([0, h])

As before, let B be now the Banach space of continuous functions, whose support is the interval [0, h], with
the supremum norm, denoted as C ([0, h]) . The following lemma states that ‖ρkθ‖L(B) ≤ 1, for θ > 0, and
for every k ≥ 1,withL (B) being the space of bounded linear operators on the Banach spaceB = C ([0, h]) ,
and ρθ being introduced in equation (3). Consequently, considering condition (c1) in Bosq (2000), p. 74, with
a = 2, b = 1/2 and j = 1, from Lemma 3.1 and Theorem 3.1, in Bosq (2000), pp. 74–75, X = (Xn, n ∈
Z), constructed in (1) from O.U. process, defines the unique stationary solution to equation (2), in the Banach
space B = C ([0, h]) , admitting a MAB(∞) representation.
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Lemma 4 Let ρθ introduced in (3), defined on B = C ([0, h]) . Then, for k ≥ 1, ‖ρkθ‖L(B) ≤ 1, with θ > 0.

Proof.
From

ρkθ(x)(t) = e−θte−θ(k−1)hx(h),

for each k ≥ 1 and θ > 0, we have

‖ρkθ‖L(B) = sup
x∈B

{‖ρkθ (x) ‖B
‖x‖B

}
= sup
x∈B

sup0≤t≤h | exp(−θt) exp(−θ(k − 1)h)x(h)|
sup0≤t≤h |x(t)|

= sup
x∈B

|x(h)| exp(−θ(k − 1)h) sup0≤t≤h exp(−θt)
sup0≤t≤h |x(t)| ≤ sup

x∈B

|x(h)| sup0≤t≤h exp(−θt)
|x(h)|

= sup
0≤t≤h

exp(−θt) = 1. (25)

�
We now check strong consistency of the MLE ρθ̂n

of ρθ in L(B). From (25),

‖ρθ − ρθ̂n
‖L(B) ≤ sup

0≤t≤h
|e−θt − e−θ̂nt|, a.s. (26)

From Lemma 2, for n sufficiently large, we then have

‖ρθ − ρθ̂n
‖L(B) ≤ h|θ − θ̂n|, a.s. (27)

Theorem 1 then leads to the desired result on strong consistency of the estimator ρθ̂n
of ρθ in L(B). Further-

more, from Theorem 2 , in a similar way to Remark 3,
√
n-consistency of ρθ̂n

in L (B) also follows from
equations (18) and (27).

Similarly to Corollary 1, in the following result, the consistency, in the Banach space
B = C([0, h]), of the plug-in predictor (17) is obtained.

Corollary 2 The ARB(1) plug-in predictor (17) of a zero-mean O.U. process is consistent in B = C([0, h]),
i.e., as n→∞,

‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖B →p 0. (28)

Proof. From Lemma 2, for n sufficiently large, and for each h > 0,

‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖B = sup

0≤t≤h
|e−θt − e−θ̂nt||Xn−1 (h) | ≤ h|θ − θ̂n||Xn−1 (h) |, a.s. (29)

As derived in the proof of Corollary 1, from Theorem 2, the random sequence {Yn}n∈Z =
{
h|θ − θ̂n|

}
n∈Z

is such that
√
ln (n)Yn ≤

√
h
3 + 1

√
ln (n)Yn →p 0, n → ∞. Moreover, {Zn}n∈Z = {Xn−1 (h)}n∈Z is

such that Xn−1 (h) ∼ N
(
0, 1

2θ

)
. Lemma 3 then leads, as n → ∞, to the desired convergence result from

equation (29)

‖
(
ρθ − ρθ̂n

)
(Xn−1) ‖B ≤ Yn|Zn| →p 0. (30)

�
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3. Simulations

In this section, a simulation study is undertaken to illustrate the asymptotic results presented in this paper
about the MLE θ̂n of θ, and the consistency of the ML functional parameter estimators of the autocorrelation
operator, and the associated plug-in predictors, in the ARH(1) and ARB(1) frameworks.

3.1. Estimation of scale parameter θ

For simulation of the sample-paths of O.U. process, an extension of the Euler method, the Euler-Murayama
method (see Kloeden and Platen (1992)) is applied, from the Langevin stochastic differential equation satis-
fied by the O.U. process {ξt, t ∈ [0, T ]}

dξt = −θξt + dWt, θ > 0, t ∈ [0, T ] , ξ0 = x0. (31)

Thus, let 0 = t0 < t1 < t2 < · · · < tn = T be a partition of real interval [0, T ] . Then, (31) can be
discretized as

ξ̂i+1 = ξ̂i − θξ̂i + ∆Wi, ξ̂0 = ξ0 = 0, (32)

where {∆Wi}i=0,...,n−1 are i.i.d. Wiener increments, i.e., ∆Wi ∼ N (0,∆t) =
√

∆tN (0, 1). In the follow-
ing, we take ∆t = 0.02 as discretization step size, considering N = 1000 simulations of the O.U. process.
In particular, Figure 1 shows some realizations of the discrete version of the solution to (31) generated from
(32).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Three sample paths of O.U. process {ξt}0≤t≤T generated with T = 5, ∆t = 0.02, θ = 5, ξ̂0 = 0

Let us first illustrate the asymptotic normal distribution of θ̂T , i.e., for T sufficiently large, we can consider
θ̂T ∼ N

(
θ, 2θ

T

)
(see Theorem 1 in the supplementary material).

From equation (10), we take θ̂T =
−
∫ T

0

ξtdξt
∫ T

0

ξ2t dt

(see also equation (9) in the supplementary material),

to compute the following approximation of the MLE θ̂T of θ, for each one of the N = 1000 simulations
performed of the O.U. process on [0, T ], and for each one of the six values of parameter θ considered:

θ̂T '
−
n−1∑

i=0

ξ̂ti,s(θ)
(
ξ̂ti+1,s(θ)− ξ̂ti,s(θ)

)

n−1∑

i=0

ξ̂2ti,s(θ)∆t

, t0 = 0, tn = T, ∆t = 0.02, s = 1, . . . , N, (33)
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Figure 2: The values of θ̂T − θ, based on N = 1000 simulations of the O.U. process over the interval
[0, T ], for T = 12000 + (l − 1)1000, l = 1, . . . , 7, are represented against the confidence bands given by

+3σ = 3
√

2θ
T (upper dotted line) and −3σ = −3

√
2θ
T (lower dotted line), for θ = 0.1 (at the left-hand

side) and θ = 5 (at the right-hand side)

where ξ̂ti,s(θ) represents the s-th discrete generation of the O.U. process, evaluated at time ti, with covari-
ance scale parameter θ, for θ = 0.1, 0.4, 0.7, 1, 2, 5. Table 1 displays the empirical probabilities of the error

θ̂T − θ to be within the band±3
√

2θ
T , from N = 1000 discrete simulations of the O.U. process, considering

different sample sizes T = 12000 + 1000(l− 1), l = 1, . . . , 7, and the values θ = 0.1, 0.4, 0.7, 1, 2, 5. Fig-
ure 2 displays the cases θ = 0.1 (at the left-hand side) and θ = 5 (at the right-hand side). It can be observed
that, for each one of the sample sizes considered, T = 12000 + 1000(l − 1), l = 1, . . . , 7, approximately

a 99% of the realizations of θ̂T − θ lie within the band ±3
√

2θ
T , which supports the asymptotic Gaussian

distribution.

T\θ 0.1 0.4 0.7 1 2 5
12000 0.9983 1 0.9983 0.9983 1 0.9983
13000 0.9967 0.9983 0.9983 1 0.9950 1
14000 0.9983 0.9967 1 0.9967 1 0.9983
15000 0.9983 0.9967 0.9983 0.9983 1 0.9983
16000 0.9967 0.9950 0.9967 0.9983 1 1
17000 0.9933 0.9983 1 0.9967 0.9950 1
18000 0.9967 0.9967 0.9950 1 1 0.9983

Table 1: Empirical probabilities of the error of the MLE of θ to lie within the band ±3σ = ±3
√

2θ
T , for

different sample sizes T, and values of parameter θ

Regarding asymptotic efficiency, stated in Theorem 2, from N = 1000 simulations of the O.U. process
over the interval [0, T ], for T = 50 + 250(l − 1), l = 1, . . . , 25, the corresponding empirical mean square

errors EMSEN,T (θ) = 1
N

N∑

s=1

(
θ − θ̂T (ωs)

)2

, N = 1000, T = 50 + 250(l − 1), l = 1, . . . , 25 (abbrevi-

ated as EMSE), considering the cases θ = 0.1, 0.4, 0.7, 1, are displayed in Figure 3. Here, θ̂T (ωs), ωs ∈ Ω,
s = 1, . . . , N, represent the respective approximated values (33) of the MLE of θ, computed from ξti,s,
s = 1, . . . , N, ti ∈ [0, T ], i = 1, . . . , n. It can be observed, from the results displayed in Figure 3, that
Theorem 2 holds for T sufficiently large.

imsart-generic ver. 2014/10/16 file: Functional_prediction_O_U_process_24_April_2016_rev.tex date: 2nd May 2016



Álvarez-Liébana, Bosq and Ruiz-Medina/Functional prediction of O.U. process 10

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Figure 3: Empirical functional mean quadratic errors, based on N = 1000 generations of O.U. process, for
different sample sizes (see horizontal axis), and for the values θ = 0.1 (line with stars), θ = 0.4 (line with
circles), θ = 0.7 (line with crosses), θ = 1 (line with inclined crosses) and θ = 2 (line with triangles)

3.2. Consistency of ρθ̂T
= ρθ̂n

in L(H) and L(B)

The strong-consistency of ρθ̂n
in L(H) is derived in Proposition 1 from the following almost surely upper

bound

‖ρθ − ρθ̂n
‖2L(H) ≤ |θ − θ̂n|h

√
h

3
+ 1. (34)

Here, from N = 1000 simulations of the O.U. process on the interval [0, T ], with T = nh = n = 200000 +
(l − 1)200000 (h = 1), for l = 1, . . . , 5, the corresponding values of θ̂T − θ = θ̂n − θ are computed,
considering the cases θ = 0.4, 0.7, 1. Table 2 shows the empirical probability of θ̂T − θ to lie within the

band ±3
√

2θ
T , for each one of sample sizes T = 200000 + (l − 1)200000, l = 1, . . . , 5, and cases θ =

0.4, 0.7, 1, considered. It can be observed that for the sample sizes studied, in the case of θ = 1, the empirical
probabilities are equal to one. Thus, the almost surely convergence to zero of the upper bound (34) holds,
with approximated convergence rate

√
T =

√
n. Note that, for the other two cases, θ = 0.4 and θ = 0.7, the

empirical probabilities are also very close to one (see also Table 1 for smaller sample sizes, where we can
also observe the empirical probabilities very close to one for the same band). In particular, Figure 4 displays
the cases θ = 0.4 (at the left-hand side) and θ = 1 (at the right-hand side).

T\θ 0.4 0.7 1
200000 1 1 1
400000 1 1 1
600000 0.9988 1 1
800000 0.9988 0.9988 1
1000000 0.9977 1 1

Table 2: Empirical probability of θ̂T −θ to be within the band±3σ = ±3
√

2θ
T , from N = 1000 simulations

of O.U. process over the interval [0, T ], with T = n = 200000 + (l − 1)200000, l = 1, . . . , 5, considering
the cases θ = 0.4, 0.7, 1
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Figure 4: The values of θ̂T − θ are represented, corresponding to N = 1000 simulations of O.U. process
over the interval [0, T ], with T = n = 200000 + (l− 1)200000, l = 1, . . . , 5, considering the cases θ = 0.4

(at the left-hand side), and θ = 1 (at right-hand side). The upper dotted line is +3
√

2θ
T and the lower dotted

line is −3
√

2θ
T

It can be observed from Table 2 that a better performance is obtained for the largest values of θ, which
corresponds to the weakest dependent case. Furthermore, from the upper bound (27), the strong consistency
of ρθ̂n

in L(B), with, as before, B = C([0, h]), is also illustrated from the results displayed in Table 2 and
Figure 4.

3.3. Consistency of the ARH(1) and ARB(1) plug-in predictors for the O.U. process

Let us now consider the derived upper bounds (22) and (29) in Corollaries 1 and 2, for the ARH(1) and
ARB(1) predictors, respectively. From the generation of N = 1000 discrete realizations of the O.U. process
over the interval [0, T ], for T = n = 200000 + (l− 1)200000, l = 1, . . . , 5, the upper bounds (22) and (29)
are evaluated, for the cases θ = 0.4, 0.7, 1. The following empirical probabilities for ε2 = 0.008,

P̂Hθ,N (T ) = 1− P̂
[
|Xn−1 (h) ||θ − θ̂n|h

√
h

3
+ 1 > ε

]
(35)

N = 1000, T = n = 200000 + (l − 1)200000, l = 1, . . . , 5, θ = 0.4, 0.7, 1,

P̂Bθ,N (T ) = 1− P̂
[
|Xn−1 (h) ||θ − θ̂n|h > ε

]
(36)

N = 1000, T = n = 200000 + (l − 1)200000, l = 1, . . . , 5, θ = 0.4, 0.7, 1,

are reflected in Table 3, for the Hilbert-valued (see (22)) and Banach-valued (see (29)) frameworks (see also
Figure 5). It can be observed that the empirical probabilities are equal to one in both frameworks for the
largest sample sizes, in any of the cases considered.

Hilbert-valued case Banach-valued case
T\θ 0.4 0.7 1 0.4 0.7 1

200000 0.9800 0.9800 0.9800 0.9871 0.9906 0.9871
400000 0.9953 0.9953 0.9953 0.9965 0.9977 0.9977
600000 0.9988 0.9977 0.9988 0.9988 0.9988 1
800000 1 0.9988 0.9988 1 1 1
1000000 1 1 1 1 1 1

Table 3: Empirical probabilities (35) and (36), based on N = 1000 simulations of the O.U. process over the
interval [0, T ], for T = n = 200000 + (l − 1)200000, l = 1, . . . , 5, considering the cases θ = 0.4, 0.7, 1,
and ε2 = 0.008
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Figure 5: The values of |Xn−1 (h) ||θ−θ̂n|h
√

h
3 + 1 (top) and |Xn−1 (h) ||θ−θ̂n|h (bottom) are represented,

based on N = 1000 generations of O.U. process over the interval [0, T ], for T = n = 200000 + (l −
1)200000, l = 1, . . . , 5, against ε = 0.008 (horizontal dotted line), considering θ = 0.4 (at the left-hand
side) and θ = 1 (at the right-hand side)

The strong-consistency of the MLE of θ and of the autocorrelation operator of the O.U. process, in
Banach and Hilbert spaces, has been first illustrated. The almost surely rate of convergence to zero is shown
as well. The numerical results on the consistency of the associated ARH(1) and ARB(1) plug-in predictors
then follow, from the computation of the corresponding empirical probabilities for the derived upper bounds.
Note that the numerical results displayed in Section 3 are obtained under generation of sample sizes ranging
from 12000 up to a million of time instants, considering 1000 repetitions for each one of such sample sizes.
In all these simulations performed, the discretization step size considered has been ∆t = 0.02.

4. Final comments

The problem of functional prediction of the O.U. process could be of interest in several applied fields. For
example, in finance, in the context of Vasicek model (see Vasicek (1977)) the results derived allow to predict
the curve representing the interest rate over a temporal interval, in a consistent way. Note that, in this context,
the ML estimate computed for parameter θ provides a consistent approximation of the speed reversion, which
univocally determines the proposed functional predictor of the interest rate.

Summarizing, this paper addresses the problem of functional prediction of the O.U. process from ARH(1)
and ARB(1) perspectives. Specifically, considering the O.U. process as an ARH(1) and an ARB(1) process,
new results on strong consistency (almost surely convergence to the true parameter value), in the spaces
L(H) and L(B) of the MLE of its autocorrelation operator are derived. Consistency results (convergence in
probability to the true value) of the associated plug-in predictors are obtained as well. The numerical results
shown, in addition, the normality and the asymptotic efficiency of the MLE of the scale parameter θ of the
covariance function of the O.U. process.
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